In rural areas where piped-water infrastructure is too expensive or difficult to maintain, the burden of water collection falls primarily on women and young children. Though they may walk hours, the sources they have access to are often dangerously polluted. With so many people relying on the same sources to wash dishes and clothes and to give their livestock something to drink, preserving cleanliness is a demanding challenge. Fecal contamination from surface rainwater runoff makes matters worse.

Fortunately, a wide variety of relatively inexpensive water-improvement technologies are now at our disposal. Scientists have improved age-old tools like ceramic filters and have added to the arsenal brand-new options—including Proctor & Gamble’s award-winning PUR sachets, which render water visibly clear in addition to disinfecting it. Solar disinfection requires nothing but empty plastic bottles and the natural ultraviolet light available on a sunny day. In the high-tech facilities operated by the company WaterHealth International in India and Ghana, UV radiation purifies 20,000 liters of water daily. Myriad other water treatment methods are currently being developed and tested.

The task at hand is to figure out which of these technologies is most useful in poor countries, recognizing that the women who use them will ultimately decide whether a particular product is desirable and meets their needs. To that end we are carrying out the Kenya Rural Water Project, a series of rigorous evaluations of users’ responses to water-quality improvements in rural western Kenya. Drinking-water quality is a major public health issue in these communities where, according to our surveys, each week nearly 20 percent of young children suffer from diarrhea. We focus on the two drinking-water improvement technologies most commonly used in this area: spring protection and treatment with chlorine, both of which are simple and long-established ways to improve drinking-water quality.

Read full article