Pre-Analysis Plan Report for Twenty Year Economic Impacts of Deworming

PAP Report Authors: Michelle Layvant, Edward Miguel, Michael Walker

Paper authors: Joan Hamory (r) Edward Miguel (r) Michael Walker (r) Michael Kremer (r) Sarah Baird

July 17, 2020

Executive Summary

This document outlines all of the results pre-specified as part of the "Twenty Year Economic Impacts of Deworming" pre-analysis plan. Many of these results are presented in the corresponding paper; due to space constraints, not all outcomes and robustness checks are presented in the paper. This document is meant to provide these in an easy-to-verify format for transparency. We briefly note the specifications we use, and present tables of results organized by outcome family.

1 Introduction

Estimating the returns to childhood investments is of central importance in development and labor economics, and there is growing recognition of the long-run importance of childhood health and education interventions. This study builds on the work of Miguel and Kremer (2004) and Baird et al. (2016) to provide experimental evidence on the long-run returns to improved child health in Africa. In particular, this project analyzes the 10 to 20-year economic impacts of a school-based childhood deworming program in Kenya using outcome data from the most recent rounds of the Kenya Life Panel Survey, namely, KLPS-3, collected during 2011-2014, and KLPS-4, collected from 2017-2019.

In Baird et al. (2017), we pre-specified analyses to be conducted with data from KLPS rounds 2, 3 and 4. This plan was filed in advance of analyzing KLPS-4 data. This report presents results of all of these pre-specified analyses. It is meant to supplement the twenty-year paper (Hicks et al. 2020) and pre-analysis plan (Baird et al. 2017); interested readers should see these documents for more details of the study design, data and interpretation of results.¹

We outlined five groups of outcomes: (1) consumption, (2) wealth, (3) earnings, (4) labor supply, and (5) occupational choice. In addition, we denoted two primary outcomes: total per-capita consumption in the last 12 months, and total respondent earnings in the last 12 months. We briefly outline our main econometric approach, and then present results for each of these families in turn.

2 Econometric Specifications

We refer the reader to the twenty-year paper (Hicks et al. 2020) and pre-analysis plan (Baird et al. 2017) for details of the data and experimental design. As described in those documents, our main sample drops vocational training winners from the analysis of the KLPS-3 and KLPS-4 data, and cash grant winners are dropped from the analysis of the KLPS-4 data as these programs occurred prior to the start of data collection.

Our main regression equation takes the following form. The dependent variable Y_{ijt} is an outcome for individual *i* in original PSDP school *j* as measured in survey round *t*:

$$Y_{ijt} = \alpha + \lambda_1 T_j + \lambda_2 C_j + \lambda_3 P_j + X'_{ij,0} \beta + \varepsilon_{ijt}.$$
 (1)

The outcome is a function of $T_j \in \{0, 1\}$, the assigned deworming program treatment sta-

^{1.} In the interest of brevity, the paper presents 21 out of 54 outcomes that we show here.

tus of the individual's school. The pre-specified main coefficient of interest is λ_1 , which captures gains accruing to individuals in the 50 treatment schools relative to the 25 control schools. We consider two secondary sources of exogenous variation in exposure to deworming, namely, the 2001 cost-sharing school indicator, $C_j \in \{0, 1\}$, and the proportion of students in neighboring schools within 6 km that received deworming, $P_j \in [0, 1]$, which we call local deworming saturation. The vector $X_{ij,0}$ of individual and school covariates includes baseline school characteristics (average test score, population, number of students within 6 km, and administrative zone indicators), baseline individual characteristics (gender and grade), indicators for the KLPS survey calendar month, wave and round, and an indicator for the vocational training and cash grant control group. Estimates are weighted to maintain representativeness with the baseline PSDP population, taking into account the sampling for KLPS, the two-stage tracking methodology, and inclusion in the vocational training and cash grant program. Finally, ε_{ijt} is the error term clustered at the school level, allowing for correlation in outcomes both across individuals in those schools and across survey rounds.

We pre-specified two main approaches for estimating the data: the cross-sectional approach (Approach 1 in the PAP) restricts attention to KLPS-4, while the pooled approach (Approach 2 in the PAP) makes use of longitudinal data from all rounds where available. We also noted that, where longitudinal data is available, we may look at effects round-by-round in order to better understand the evolution of outcomes over time; these regressions also take the same form as above.

We look at two main sources of heterogeneity – heterogeneity by gender and age at baseline. Heterogeneity by the respondent's gender is estimated from a single regression by including an indicator for female and treatment-female, cost-sharing-female, and saturation-female interaction terms. Heterogeneity by baseline age is also estimated from a single regression, including an indicator for those older than 12 at baseline and treatment-older, cost-sharing-older, and saturation-older interaction terms.

In addition to these main results, we present several robustness checks. First, for monetary outcomes, the pre-analysis plan notes that our primary approach trims the top 1% of observations to reduce the influence of outliers; here, we also present untrimmed results for the pooled specification. Second, we include respondents that participated in the vocational training (VocEd) and cash grant (SCY) interventions, including indicators for treatment groups for both interventions. Lastly, for some earnings-related outcomes, we collect data about both the last 12 months and the last month; our main results focus on the last 12 months, and here we also present results for the last month.

The PAP notes that we will present both "per-comparison" p-values, as well as FDR q-values, within the families of outcomes that we have defined, following Anderson (2008)

and Casey, Glennerster, and Miguel (2012). In addition, FDR q-values are calculated over the two key primary outcomes (per-capita consumption and respondent earnings) outlined above.

3 Price Conversion

The PAP notes that consumption, earnings, and wealth meausures will be converted to 2017 USD at Purchasing Power Parity (PPP).

All monetary amounts that are not already reported in Kenyan Shillings (KES) are first converted to KES using the average exchange rate by survey wave in KLPS-4. This means that if the survey was conducted during Wave 1, all amounts reported in Ugandan Shillings (UGX) are converted to KES using the average exchange rate of UGX to KES for the time period January 5, 2017–May 21, 2018 (35.2684 UGX / 1 KES). Similarly, if the survey was conducted during Wave 2, all amounts reported in UGX are converted to KES using the average exchange rate for UGX are converted to KES using the average exchange rate for the time period June 2, 2018–June 18, 2019 (37.0597 UGX / 1 KES).² All amounts in KLPS-2 and KLPS-3 that are not already reported in KES are converted to KES using the average exchange rate between 2006–2016 for each respective currency.

Values that are reported, or have been converted to, KES are then converted to USD at PPP for that survey year.³ In other words, surveys that took place in 2018 are then converted to 2018 USD by dividing the total amount in KES by the 2018 KES to USD exchange rate. Surveys that took place during 2019 are converted to USD using the 2018 exchange rate as the 2019 exchange rate had not been released when PPP data was downloaded from the World Bank.

Once values have been converted to USD, values are inflated (or deflated) to 2017 USD using Consumer Price Index (CPI) inflation rates.⁴ All values are multiplied by the 2017 CPI and divided by the CPI in that survey year. Surveys conducted in 2019 are deflated to 2017 USD using the 2018 CPI inflation rate.

We also adjust consumption expenditures using an urban-rural price deflator for respondents living in Nairobi and Mombasa. See Section 5 for additional details on the construction of the urban-rural price deflator.

^{2.} Average exchange rates by wave were obtained at www.fxtop.com.

^{3.} Exchange rates - PPP conversion factor, GDP (LCU per international \$) - were obtained from the World Bank at https://data.worldbank.org/indicator/PA.NUS.PPP?locations=KE during June 2019.

^{4.} The CPI inflation rates were obtained from the Bureau of Labor Statistics (All Urban Consumers - U.S. city average, All items - CUUR0000SA0) at https://www.bls.gov/data/#prices during June 2019.

4 Primary Outcomes

We designated two outcomes as primary: annual per-capita consumption and annual individual earnings. Details on the construction of these outcomes can be found in Sections 5 and 7.1, respectively. Here, we present main table that reports FDR q-values across each of these; for additional robustness checks, see the corresponding tables in the aforementioned sections.

List of tables:

1. Table 1: Pooled, top 1% trimmed

5 Family 1: Household Consumption

Consumption data is only available in KLPS-4 and for a representative subset of KLPS-3 respondents. We thus present pooled estimates and then results by round. Our primary specification trims the top 1% of observations. For robustness, we present untrimmed pooled results, as well as including individuals that participated in the vocational training (VocEd) and cash grant voucher (SCY) programs.

Consumption expenditure measures are adjusted for urban-rural price differences using information from price surveys that were collected contemporaneously at various local markets (in western Kenya as well as in the major urban areas of Nairobi and Mombasa). Total consumption expenditures for individuals living in Nairobi and Mombasa are divided by an urban-rural price deflator, or price index. This price deflator is calculated by fixing consumption quantities as in a Laspeyres-style price index. The urban-rural price deflator equals 1.11 in KLPS-3 and 1.19 in KLPS-4.

Consumption expenditure measures are converted to 2017 USD PPP (see Section 3 for a detailed explanation of the PPP conversion).

Notes on outcome construction:

- 1. Per-Capita Consumption: The sum of the monetary value of goods consumed by the household through purchase, gift, barter, or home production in the last 12 months divided by the number of household members. Households which indicated that they purchased an item, but did not report a total price for these items nor a total quantity purchased are assumed to have consumed the mean amount consumed by other households adjusted for household size.
- 2. Log Per-Capita Consumption: As in (1) and logged.

- 3. Per-Capita Food Consumption: The sum of the monetary value of food items consumed by the household through purchase, gift, barter, or home production in the last 12 months divided by the number of household members. Food purchases reported in quantities rather than a monetary value (e.g., kilograms, liters, etc.) are converted to KES by multiplying the quantity purchased for that household by the average price of this item for that month and market region. Food that is reported in non-standard units relative to the price data (e.g., household reporting 1 kg of potatoes as opposed to the number of potatoes purchased) are converted back to the "standard unit," and then converted to KES using the price data for that month and market region.
- 4. Log Per-Capita Food Consumption: As in (3) and logged.
- 5. Per-Capita Non-Food Consumption: The sum of the monetary value of non-food items consumed by the household through purchase, gift, barter, or home production in the last 12 months divided by the number of household members. Non-food consumption includes frequent and non-frequent non-food purchases excluding contributions to informal credit schemes, losses due to theft, and contributions to savings accounts.
- 6. Log Per-Capita Non-Food Consumption: As in (5) and logged.
- Average Meals Eaten: This is equal to the average number of meals eaten by the respondent in the last 3 days for KLPS-4 observations and meals eaten yesterday for KLPS-3 observations.
- Household Tax Spending: The sum of local council taxes taxes and fees, community group fees, and bribes paid by the household to the government in the last 12 months. KLPS-3 uses E-Module data.
- 9. Log Household Tax Spending: As in (8) and logged.

List of tables:

- 1. Table 2: Pooled, top 1% trimmed
- 2. Table 3: Pooled, untrimmed
- 3. Table 4: KLPS-4, top 1% trimmed
- 4. Table 5: KLPS-3, top 1% trimmed
- 5. Table 6: Pooled, top 1% trimmed, SCY/VocEd included

6 Family 2: Household Wealth

Wealth data is only collected in KLPS-4. Our primary specification trims the top 1% of observations. For robustness, we present untrimmed results, as well as including individuals in the VocEd and SCY programs.

Wealth measures are converted to 2017 USD PPP (see Section 3 for a detailed explanation of the PPP conversion).

Notes on outcome construction:

- 1. Per-Capita Household Wealth: The sum of total household durable asset ownership and livestock ownership, divided by the number of household members. The total value of durable assets and livestock is found by multiplying the number of durable assets and livestock owned by each household by the average price of that item purchased by the household. If the household did not purchase this item within the last 12 months, we employ the median price of that item across all households (separately for urban versus rural households). Urban household are considered those living in Nairobi and Mombasa.
- 2. Log Per-Capita Household Wealth: As in (1) and logged.
- 3. Per-Capita Household Assets: The sum of total household durable asset ownership divided by the number of household members. The total value of durable assets is found by multiplying the number of durable assets owned by each household by the average price of that item purchased by the household. If the household did not purchase this item within the last 12 months, we employ the median price of that item across all households (separately for urban versus rural households).
- 4. Log Per-Capita Household Assets: As in (3) and logged.
- 5. Per-Capita Livestock Ownership: The sum of total livestock ownership, divided by the number of household members. The total value of livestock is found by multiplying the number of livestock owned by each household by the average price of that item purchased by the household. If the household did not purchase this item within the last 12 months, we employ the median price of that item across all households (separately for urban versus rural households).
- 6. Log Per-Capita Livestock Ownership: As in (5) and logged.

List of tables:

- 1. Table 7: KLPS-4, top 1% trimmed
- 2. Table 8: KLPS-4, untrimmed
- 3. Table 9: KLPS-4, top 1% trimmed, SCY/VocEd included

7 Family 3A: Individual Earnings Outcomes

Here we list out earnings outcomes broken down into non-hourly and hourly earnings outcomes. All multiple-testing adjustments (FDR adjustments) are done across all earnings outcomes.

Individual wage earnings and self-employment profits are collected in KLPS-2, KLPS-3, and KLPS-4. Farming profits are only collected in KLPS-3 and KLPS-4. Earnings measures are converted to 2017 USD PPP (see Section 3 for a detailed explanation of the PPP conversion).

We present pooled estimates and results by round (for KLPS-3 and KLPS-4). Our primary specification trims the top 1% of observations. For robustness, we present untrimmed pooled results, as well as including individuals that participated in VocEd and SCY programs. We also present results where we calculate earnings focusing on the most recent month only (and hence not using any recall data).

7.1 Part 1: Non-Hourly Earnings Measures

Notes on outcome construction:

- 1. Individual Earnings: The sum of wage employment across all jobs, non-agricultural self-employment profit across all businesses, and farming profits within the last 12 months.
- 2. Log Individual Earnings: As in (1) and logged.
- 3. Individual Wage Earnings: The sum of wage earnings across all jobs within the last 12 months.
- 4. Log Individual Wage Earnings: As in (3) and logged.
- 5. Self-Employment Profit: The sum of self-employment profits across all jobs (excluding agricultural businesses) within the last 12 months.
- 6. Log Self-Employment Profit: As in (5) and logged.

- 7. Individual Farming Profits: Individual farming profit for KLPS-3 is measured as the sum of all crop-specific production (valued in cash) minus input costs within the last 12 months, for farming activities for which the respondent provided all reported household labor hours and was the main decision-maker. The input cost is calculated as the sum of the salaries for workers from outside the household and the amount spent on tools and machinery. Individual farming profit for KLPS-4 includes the net profit generated from non-crop and crop farming activities within the last 12 months for which the respondent provided all reported household labor hours and was the main decision-maker. This is the value of everything produced, minus expenses for the activity including hired workers, land rental, storage, and purchase of inputs, such as raw materials, fuel, and electricity. Farming profits are not available for KLPS-2.
- 8. Log Individual Farming Profits: As in (7) and logged.
- 9. Taxes on Individual Wages and Profits: The sum of licenses and taxes and bribes to the government for current self-employment jobs, plus the total amount deducted in taxes from the respondent's salary for current wage-earning jobs.
- 10. Log Taxes on Individual Wages and Profits: As in (9) and logged.

List of tables:

- 1. Table 10: Pooled, top 1% trimmed
- 2. Table 11: Pooled, untrimmed
- 3. Table 12: KLPS-4, top 1% trimmed
- 4. Table 13: KLPS-3, top 1% trimmed
- 5. Table 14: Pooled, top 1% trimmed, SCY/VocEd included
- 6. Table 15: Pooled, top 1% trimmed, last month

7.2 Part 2: Hourly Earnings Measures

Notes on outcome construction:

1. Individual Hourly Earnings: The sum of wage employment across all jobs, non-agricultural self-employment profit across all businesses, and farming profits within the last 12 months, divided by 52, divided by the total hours worked across all activities during

the last week, among those with at least 10 work hours across all activities. Total hours worked in each job, within job categories (i.e., wage-earning, self-employment, and farming), and across all jobs are top-coded at 100 hours per week.

- 2. Log Individual Hourly Earnings: As in (1) and logged.
- 3. Hourly Individual Wage Earnings: The sum of wage earnings across all jobs within the last 12 months, divided by 52, divided by the total hours worked across all wage employment during the last week, among those with at least 10 work hours. Total hours worked in each wage job and across all wage-earning jobs are top-coded at 100 hours per week.
- 4. Log Hourly Individual Wage Earnings: As in (3) and logged.
- 5. Hourly Self-Employment Profit: The sum of self-employment profits across all jobs (excluding agricultural businesses) within the last 12 months, divided by 52, divided by the total hours worked across all non-agricultural self-employment during the last week, among those with at least 10 work hours. Total hours worked in each self-employment job and across all self-employment jobs are top-coded at 100 hours per week.
- 6. Log Hourly Self-Employment Profit: As in (5) and logged.
- 7. Hourly Individual Farming Profits: The net profit generated from non-crop and crop farming activities for which the respondent provided all reported household labor hours and was the main decision-maker within the last 12 months, divided by 52, divided by hours worked in farming during the last week, among those with at least 10 work hours. Farming profits are not available for KLPS-2. Total hours worked in each farming job and across all farming jobs are top-coded at 100 hours per week.
- 8. Log Hourly Individual Hourly Farming Profits: As in (7) and logged.

List of tables:

- 1. Table 16: Pooled, top 1% trimmed
- 2. Table 17: Pooled, untrimmed
- 3. Table 18: KLPS-4, top 1% trimmed
- 4. Table 19 KLPS-3, top 1% trimmed

- 5. Table 20: Pooled, top 1% trimmed, SCY/VocEd included
- 6. Table 21: Pooled, top 1% trimmed, last month

8 Family 3B: Household Earnings Outcomes

Household earnings are only collected as part of KLPS-4. Household tax spending is collected in KLPS-3 and KLPS-4. Household earnings measures are converted to 2017 USD PPP (see Section 3 for a detailed explanation fo the PPP conversion).

We present pooled estimates and results by round (for KLPS-4 only). Our primary specification trims the top 1% of observations. For robustness, we present untrimmed pooled results, as well as including individuals that participated in VocEd and SCY programs. We also present results where we calculate household earnings focusing on the most recent month only (and hence not using any recall data).

Notes on outcome construction:

- Per-Capita Household Earnings: The sum of wage employment earnings, self-employment profits, and agricultural profits across household members in the last 12 months divided by the number of household members. Household earnings are only available in KLPS-4.
- 2. Log Per-Capita Household Earnings: As in (1) and logged.
- 3. Household Tax Spending: The sum of licenses and taxes on self-employment profits, bribes paid to government officials, police or other authorities, local council taxes and fees, and community group fees in the last 12 months divided by the number of household members. Bribes, local council taxes and fees, and community group fees are collected at the household level; whereas, licenses and taxes on self-employment profits are only collected for the KLPS respondent.
- 4. Log Household Tax Spending: As in (3) and logged.

List of tables:

- 1. Table 22: Pooled, top 1% trimmed
- 2. Table 23: Pooled, untrimmed
- 3. Table 24: KLPS-4, top 1% trimmed

- 4. Table 25: Pooled, top 1% trimmed, SCY/VocEd included
- 5. Table 26: Pooled, top 1% trimmed, last month

9 Family 4: Labor Supply

Labor supply data is collected in KLPS-2, KLPS-3, and KLPS-4. We present pooled estimates and results by round (for KLPS-4 and KLPS-3). For robustness, we present results that include individuals that participated in the VocEd and SCY programs.

Notes on outcome construction:

- 1. Total Hours Worked: The sum of hours worked in agriculture, wage-earning activities, and self-employment in the last 7 days. Total hours worked in each job, within job categories (i.e., wage-earning, self-employment, and farming), and across all jobs are top-coded at 100 hours per week.
- 2. Log Total Hours Worked: As in (1) and logged.
- 3. Non-Zero Hours: An indicator variable for non-zero hours worked in the last 7 days.
- 4. Farm Hours Worked: The sum of hours worked in all non-crop and crop farming activities in the last 7 days. Total hours worked in each farming job and across all farming jobs are top-coded at 100 hours per week.
- 5. Log Farm Hours Worked: As in (4) and logged.
- 6. Wage Hours Worked: The sum of wage hours worked across all wage jobs in the last 7 days. Total hours worked in each wage job and across all wage jobs are top-coded at 100 hours per week.
- 7. Log Wage Hours Worked: As in (6) and logged.
- 8. Self-Employment Hours Worked: The sum of wage hours worked across all self-employment jobs in the last 7 days. Total hours worked in each self-employment job and across all self-employment jobs are top-coded at 100 hours per week.
- 9. Log Self-Employment Hours Worked: As in (8) and logged.
- 10. Non-Zero Wage or Self-Employment Hours: An indicator variable for non-zero hours worked in wage-earning activities and self-employment in the last 7 days.

List of tables:

- 1. Table 27: Pooled
- 2. Table 28: KLPS-4
- 3. Table 29: KLPS-3
- 4. Table 30: Pooled, SCY/VocEd included

10 Family 5: Occupational Choice

Occupational choice data is collected in KLPS-2, KLPS-3, and KLPS-4 and includes indicators for working a wage-earning job in various sectors.

We present pooled estimates and results by round (for KLPS-4 and KLPS-3). For robustness, we present results that include individuals that participated in the VocEd and SCY programs.

Notes on outcome construction:

- 1. Employed Agriculture: An indicator for employed in the agricultural sector as the primary job (excluding subsistence agriculture and self-employment).
- 2. Employed Fishing: An indicator for employed in the fishing sector as the primary job (excluding subsistence fishing and self-employment).
- 3. Employed Manufacturing: An indicator for working for wages in the manufacturing sector as the primary job.
- 4. Employed Construction/Casual Labor: An indicator for employed in the construction/casual labor sector as the primary job.
- 5. Employed Services: An indicator for employed in the services sector as the primary job.
- 6. Employed Retail and Wholesale Trade: An indicator for employed in the retail and wholesale trade sector as the primary job.
- 7. Employed Trade Contractor: An indicator for employed in the trade contractor sector as the primary job.

List of tables:

- 1. Table 31: Pooled
- 2. Table 32: KLPS-4
- 3. Table 33: KLPS-3
- 4. Table 34: Pooled, SCY/VocEd included

References

- Anderson, Michael L. 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects." Journal of the American Statistical Association 103 (484): 1481– 1495.
- Baird, Sarah, Joan Hamory Hicks, Michael Kremer, and Edward Miguel. 2016. "Worms at Work: Long-run Impacts of a Child Health Investment"." The Quarterly Journal of Economics 131, no. 4 (July): 1637–1680.
- ———. 2017. "Pre-Analysis Plan for "The 20-year Impacts of Child Deworming in Kenya"." RCT ID: AEARCTR-0001191.
- Casey, Katherine, Rachel Glennerster, and Edward Miguel. 2012. "Reshaping Institutions: Evidence on Aid Impacts Using a Preanalysis Plan*." The Quarterly Journal of Economics 127 (4): 1755–1812.
- Hicks, J. Hamory, E. Miguel, M. Walker, M. Kremer, and S. Baird. 2020. "Twenty Year Economic Impacts of Deworming." Working paper, June.
- Miguel, Edward, and Michael Kremer. 2004. "Worms: identifying impacts on education and health in the presence of treatment externalities." *Econometrica* 72 (1): 159–217.

Table 1: Primary Outcomes: Annual Per-Capita Consumption and Annual Individual Earnings

	(1)	(2)	(3)	(4)	(5)
	All	Female	Male	Older	Younger
Panel A: Annual Per-	Capita	Consumpti	on (KLF	PS-3 and 4	()
Treatment (λ_1)	305^{*}	89	513^{*}	886***	-179
	(159)	(134)	(304)	(223)	(185)
Control Mean	2156	1715	2594	1908	2381
Treatment Effect $(\%)$	14.15	5.21	19.76	46.44	-7.52
FDR q-value	.132	.630	.623	.001	.290
Number Observations	4794	2473	2321	2402	2341
Panel B: Annual Indi	vidual 1	Earnings (K	KLPS-2,	3, and 4)	
Treatment (λ_1)	80	41	118	258**	-75
	(76)	(62)	(133)	(108)	(100)
Control Mean	1218	674	1728	1177	1242
Treatment Effect $(\%)$	6.53	6.02	6.84	21.93	-6.07
FDR q-value	.175	.630	.630	.030	.292
Number Observations	13624	6826	6798	6791	6780

Notes: Panel A reports annual per-capita total consumption, calculated as the sum of the monetary value of goods consumed by the household through purchase, gift, barter, or home production in the last 12 months, divided by the number of household members. The consumption/expenditure module was administered to a subset of the sample during round 3 and the full sample during round 4. Consumption is adjusted for urban-rural price differences for respondents living in Nairobi and Mombasa. Panel B reports annual individual earnings, calculated as the sum of wage employment across all jobs; non-agricultural self-employment profit across all business; and individual farming profit, defined as net profit generated from non-crop and crop farming activities for which the respondent provided all reported household labor hours and was the main decision-maker within the last 12 months. Wage earnings and self-employment profits were collected in KLPS rounds 2, 3 and 4; agricultural profits were collected in KLPS 3 and 4. All outcomes are converted to constant 2017 USD at PPP rates, and the top 1% of observations are trimmed. Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming on average compared to Group 3. Columns (2) through (5) report estimates separately by gender and age at baseline (older than 12, 12 or younger). Columns (2) and (3) report estimates for Female and Male are constructed from a single regression including treatment-female, costsharing-female, and saturation-female interaction terms. Columns (4) and (5) also report results from a single regression, using an indicator for those older than 12 at baseline and analogous interaction terms to Columns (2) and (3). The pre-analysis plan (PAP) specified annual per-capita consumption and annual individual earnings as primary outcomes. Following the PAP, the FDR adjustment in column (1) is carried out across the two λ_1 coefficient estimates from column (1). The FDR adjustment in columns (2) and (3) are carried out across the four λ_1 coefficient estimates from columns (2) and (3). Similarly, the FDR adjustment in columns (4) and (5) are carried out across the four λ_1 coefficient estimates from columns (4) and (5). Covariates follow Baird et al. (2016) and include controls for baseline 1998 primary school population, geographic zone of the school, survey wave and month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average school test score on the 1996 Busia District mock exams, total primary school pupils within 6 km, and a cost-sharing school indicator. Those treated in a separate vocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-3 and KLPS-4 sample. Those treated in a separate small grant intervention (SCY) which occurred after KLPS-3 are dropped from the KLPS-4 sample. Observations are weighted to be representative of the original PSDP population, and include KLPS population weights, SCY and VocEd control group weights, and KLPS intensive tracking weights. Standard errors are clustered at the 1998 school level. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		()	Per-Capita	Log Per-Capita	Per-Capita	Log Per-Capita	(.)	(-)	(-)
	Per-Capita	Log Per-Capita	Food	Food	Non-Food	Non-Food	Average	Household	Log Household
	Concumption	Concurrention	Concumption	Congumption	Concurrention	Congumption	Moole Foton	Tay Sponding	Tay Sponding
Panal A. Eull Sample	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Meals Laten	Tax Spending	Tax Spending
T unei A. Fui Sample	205*	10*	00	0.9	110	108	00	0	17
Ireatment (λ_1)	305.	.10	22	.03	110	.10.	00	-0	.17
	(159)	(.05)	(47)	(.04)	(71)	(.05)	(.03)	(1)	(.25)
Cost Sharing (λ_2)	-136	04	10	00	-101	06	04	-1	06
	(144)	(.05)	(51)	(.04)	(67)	(.05)	(.03)	(1)	(.24)
Saturation (λ_3)	957	.02	-555	21	-63	03	.10	4	1.25
	(1408)	(.37)	(397)	(.30)	(390)	(.30)	(.14)	(5)	(1.26)
Control Mean	2156	7.32	882	6.5	1138	6.55	2.51	3	3.7
Treatment Effect (%)	14.2	9.1	2.5	3.3	10.2	9.8	1	3	15.8
Joint F-Test (p-value)	.259	.220	.263	.542	.310	.277	.259	.582	.735
Treatment FDR o-value	.237	.237	.855	.709	.237	.237	1.000	1.000	.709
Number Observations	4794	4794	4794	4791	4794	4794	4835	4811	169
Panel B: Females									
Treatment (λ_1)	89	.05	49	.05	12	.05	.04	-0	.21
	(134)	(.06)	(49)	(.05)	(88)	(.08)	(.04)	(1)	(.41)
Cost Sharing (λ_2)	-179	03	-15	.00	-48	03	08**	0	.52
	(152)	(.06)	(53)	(.05)	(78)	(.07)	(.04)	(1)	(.37)
Saturation (λ_3)	-896	34	-373	07	-687	47	.23	-4	-1.44
	(1056)	(.37)	(395)	(.35)	(552)	(.46)	(.27)	(5)	(3.25)
Control Mean	1715	7.14	735	6.34	866	6.34	2.55	1	3.44
Treatment Effect (%)	5.2	4.6	6.7	4.8	1.3	4.8	17	-37 7	18.8
Ioint F Tost (p value)	0.471	0.473	0.238	0.555	0.336	0.510	0.151	0.878	0.174
Treatment FDP a value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2472	1.000	2464	2461	2471	2.000	2475	2.000	1.000
Number Observations	2475	2475	2404	2401	2471	2471	2475	2471	90
Panel C: Males									
Treatment (λ_1)	513*	.14	-5	.02	219	.15	05	0	.15
	(304)	(.09)	(82)	(.07)	(153)	(.10)	(.05)	(2)	(.28)
Cost Sharing (λ_2)	-113	06	35	00	-158	10	.00	-2	29
0(2)	(263)	(.08)	(70)	(.06)	(127)	(.08)	(.04)	(2)	(.25)
Saturation (λ_2)	2422	30	-693	- 32	437	31	- 00	10	1.68
Saturation (73)	(2340)	(63)	(594)	(54)	(689)	(49)	(18)	(8)	(1.20)
Control Moon	2504	7.40	1021	6.65	1402	6.76	2.47	E	2 77
Transforment Effect (07)	2094	1.49	1021	1.0	1402	14.4	2.47	70	3.11
List E Test (n subs)	19.0	10.0	5	1.9	15.0	14.4	-1.6	0.527	14.5
Joint F-Test (p-value)	0.412	0.427	0.557	0.869	0.509	0.440	0.085	0.537	0.405
Treatment FDR q-value	.537	.537	1.000	1.000	.537	.537	.539	1.000	.967
Number Observations	2321	2321	2330	2330	2323	2323	2360	2340	113
Panel D: Older than 12									
Treatment (λ_1)	886***	30***	153***	20***	383***	28***	05	2	40
from (A)	(223)	(07)	(57)	(05)	(98)	(.08)	(03)	(2)	(38)
Cost Sharing ()	347	16**	100*	(.00)	262***	10**	(.00)	(2)	21
Cost Sharing (xg)	(228)	(07)	(50)	(05)	(04)	(08)	(04)	(2)	(22)
Coturnetion ())	2005	(.07)	(39)	(.05)	(94)	(.08)	(.04)	(2)	(.32)
Saturation (λ_3)	5095 (1079)	.00	-129	.20	230	.19	15	(7)	1.59
G + 114	(1978)	(.49)	(408)	(.00)	(324)	(.42)	(.14)	(7)	(1.05)
Control Mean	1908	7.2	821	0.4	981	6.43	2.44	2	3.38
Treatment Effect (%)	46.4	26.2	18.7	18.2	39.0	24.8	2.1	87.3	33.4
Joint F-Test (p-value)	0.002	0.001	0.034	0.004	0.002	0.004	0.100	0.665	0.142
Treatment FDR q-value	.001	.001	.006	.001	.001	.001	.067	.097	.110
Number Observations	2402	2402	2392	2391	2403	2403	2412	2399	96
Panel E: 12 or Vounger									
Treatment ()	170	07	80	10*	80	04	05	9	0.9
Treatment (XI)	(195)	(.05)	-60	(.05)	(87)	(07)	(.04)	(1)	(21)
Cost Sharin - ()	(100)	(.00)	70	(.05)	(07)	(.07)	(.04)	(1)	(.01)
Cost Sharing (Λ_2)	-00	.02	(67)	.07	11 (02)	.02	01	-0 (1)	24
	(100)	(c0.)	(07)	(60.)	(83)	(.00)	(.03)	(1)	(.30)
Saturation (λ_3)	-1424	56*	-985**	68**	-370	26	.28	0	04
	(911)	(.29)	(421)	(.30)	(407)	(.31)	(.19)	(6)	(1.59)
Control Mean	2381	7.42	938	6.59	1274	6.67	2.57	3	3.89
Treatment Effect (%)	-7.5	-7.0	-8.6	-10.4	-7.0	-4.0	-1.9	-51.2	-2.4
Joint F-Test (p-value)	0.355	0.258	0.144	0.072	0.618	0.844	0.047	0.247	0.749
Treatment FDR q-value	.765	.765	.765	.765	.765	.765	.765	.765	.765
Number Observations	2341	2341	2350	2348	2340	2340	2370	2359	71

Table 2: Consumption - Pooled (trimmed)

Number Observations2341234123502348234023402370235971Notes: Analysis pools the last 12 months of retrospective data from KLPS-3 and KLPS-4. KLPS-3 consumption data is only measured for a subsample of KLPS-3 individuals. Columns (1)-(6), (8), and (9) are
trimmed at the top 1% of observations. See Section 5 for notes on outcome construction. Consumption is adjusted for urban-rural price differences for respondents living in Nairobi and Mombasa. Treatment is an
a single regression including treatment-female, cost-sharing-female, and saturation-female interaction terms. Reported estimates for Polle estimates for Pemale and Male are constructed from
a single regression indicator for those older than 12 at baseline 1908 school grade fixed effects, the average school test score on the 1996 Busia District mock exams, total
primary school pupils within 6 km, and a cost-sharing school indicator. These treated in a separate vocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-4 sample. Observations are weighted to be representative of the original PSDP
population, and include KLPS population weights, SCY and VocEd control group weights, and KLPS intensive tracking weights. Standard errors are clustered at the tipe coefficients against tree coefficients against tree coefficients against three coefficients are jointy equal to zero. The FDR
adjustment is carried out across the nine outcomes within this family separately by panel (full sample, females, nules, older than 12, and 12 or younger). * denotes statistical significance at 10 pct., ** at 5 pct., and

	(1)	(2)	(3) Per-Capita	(4) Log Per-Capita	(5) Per-Capita	(6) Log Per-Capita	(7)	(8)	(9)
	Per-Capita Consumption	Log Per-Capita Consumption	Food Consumption	Food Consumption	Non-Food Consumption	Non-Food Consumption	Average Meals Eaten	Household Tax Spending	Log Household Tax Spending
Panel A: Full Sample				1		1			
Treatment (λ_1)	380	.06	309	.03	118	.09	00	-944054	45
(->	(498)	(.06)	(405)	(.05)	(165)	(.06)	(.03)	(782112)	(.50)
Cost Sharing (λ_2)	-374	03	-385	.00	53	05	04	-431906	.24
	(484)	(.05)	(413)	(.04)	(160)	(.06)	(.03)	(422339)	(.31)
Saturation (λ_3)	-1292	11	-2292	32	1017	.08	.10	2455641	.96
	(2355)	(.36)	(1917)	(.32)	(1213)	(.38)	(.14)	(2384526)	(1.84)
Control Mean	2740	7.39	1045	6.52	1415	6.61	2.51	954974	4.81
Treatment Effect (%)	13.9	5.7	29.6	2.9	8.3	9.1	1	-98.9	-60.3
Joint F-Test (p-value)	.859	.642	.636	.431	.759	.526	.259	.666	.712
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4842	4842	4842	4839	4842	4842	4835	4865	223
Panel R. Females									
Treatment (λ_1)	91	06	-97	04	135	07	04	50370	- 00
freatment (M)	(234)	(.06)	(240)	(05)	(122)	(.08)	(04)	(343130)	(82)
Cost Sharing (λ_{α})	-11	- 03	155	01	-147	- 04	- 08**	-367864	09
Cost Sharing (72)	(250)	(.06)	(242)	(.05)	(138)	(.08)	(.04)	(368140)	(.68)
Saturation (λ_2)	-4160	- 50	-3074	- 21	-582	- 51	23	3941688	-3.51
Saturation (73)	(3298)	(.41)	(2856)	(.36)	(1029)	(.51)	(.27)	(3633497)	(3.67)
Control Mean	1715	7.14	774	6.35	866	6.34	2.55	3	3.86
Treatment Effect (%)	5.3	5.6	-12.5	3.9	15.6	6.7	1.7	1972751.8	0
Joint F-Test (p-value)	0.401	0.326	0.620	0.525	0.433	0.436	0.151	0.370	0.787
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2477	2477	2477	2474	2477	2477	2475	2485	70
D 1 C M 1									
Panel C: Males	659	00	705	00	0.9	10	05	1005022	50
Treatment (λ_1)	(083)	.00	(000)	.02	93	.12	05	-1920033	39
C_{ant} Sharing ())	(962)	(.10)	(900)	(.08)	(302)	(.11)	(.05)	(1759060)	(.05)
Cost Sharing (λ_2)	-755	05	-905	.00	(275)	00	.00	-460232 (508451)	.30
Seturation $()$	(990)	(.08)	(950)	(.07)	(275)	(.09)	(.04)	(506451)	2.02
Saturation (λ_3)	(9618)	(50)	-1749	41	(1850)	(62)	00	(2122510)	(2.05
Control Moon	3706	7.62	1300	6.68	1032	6.86	2.47	1864078	5.04
Treatment Effect (%)	17.6	5.7	54.2	1.0	1932	11.1	2.47	1004078	3.04 80.7
Loint F Test (p. volue)	0.874	0.027	0.655	0.776	4.0	0.684	-1.6	-103.3	-09.1
Trootmont FDB a value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2365	2365	2365	2365	2365	2365	2360	2378	153
	2000	2000	2000	2000	2000	2000	2000	2010	100
Panel D: Older than 12									
Treatment (λ_1)	1877*	.29***	1211	.21***	504**	.30***	.05	-131378	.36
	(1104)	(.08)	(984)	(.06)	(235)	(.09)	(.03)	(233332)	(.47)
Cost Sharing (λ_2)	-1448	17**	-1146	11*	-174	19**	06	-300530	.33
G ()	(1108)	(.07)	(1002)	(.06)	(226)	(.08)	(.04)	(335426)	(.41)
Saturation (λ_3)	1221	.43	-1288	.12	2856	.65	13	2458809	1.61
0 (IN	(2437)	(.49)	(2122)	(.37)	(1700)	(.54)	(.14)	(2401939)	(2.41)
Control Mean Treatment Effect (07)	2194	1.24	910	0.42	1191	0.47	2.44	0	3.70
Freatment Effect (%)	0.010	20.4	155.1	19.0	42.5	20.1	2.1	-2200000.4	30.9
Joint F-lest (p-value)	0.210	0.004	0.591	0.009	0.187	0.009	0.100	0.000	0.250
Number Observations	2420	.005	.169	.005	.050	.005	.150	.219	.279
Number Observations	2420	2420	2420	2419	2420	2420	2412	2421	124
Panel E: 12 or Younger									
Treatment (λ_1)	-860**	12**	-451	12**	-189	07	05	-1748901	-1.38*
	(406)	(.06)	(278)	(.05)	(199)	(.08)	(.04)	(1492971)	(.73)
Cost Sharing (λ_2)	438	.06	235	.08*	164	.04	01	-578405	.38
a	(362)	(.06)	(197)	(.05)	(242)	(.07)	(.03)	(547311)	(.47)
Saturation (λ_3)	-3899	67**	-3306*	78***	-789	46	.28	1623100	07
	(3083)	(.32)	(1947)	(.29)	(1409)	(.40)	(.19)	(2245248)	(2.57)
Control Mean	3233	7.52	1170	6.61	1618	6.73	2.57	1781384	5.34
Treatment Effect (%)	-26.6	-13.1	-38.6	-12.3	-11.7	-6.7	-1.9	-98.2	
Joint F-Test (p-value)	0.184	0.076	0.360	0.020	0.731	0.650	0.047	0.685	0.289
Treatment FDR q-value	.128	.128	.178	.128	.293	.293	.273	.273	.178
Number Observations	2370	2370	2370	2368	2370	2370	2370	2382	97

Table 3: Consumption - Pooled (untrimmed)

Notes: Analysis pools the last 12 months of retrospective data from KLPS-3 and KLPS-4. KLPS-3 consumption data is only measured for a subsample of KLPS-3 individuals. Results are untrimmed. See Section 5 for notes on outcome construction. See Table 2 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1) Per-Capita	(2) Log Per-Capita	(3) Per-Capita Food	(4) Log Per-Capita Food	(5) Per-Capita Non-Food	(6) Log Per-Capita Non-Food	(7) Average	(8) Household	(9) Log Household
	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Meals Eaten	Tax Spending	Tax Spending
Panel A: Full Sample									
Treatment (λ_1)	199	.06	-12	.01	70	.07	.00	-1	03
(1, 1, 0)	(130)	(.05)	(44)	(.04)	(75)	(.06)	(.03)	(1)	(.30)
Cost Snaring (λ_2)	-103	02	20	.02	-38	02	05~	1 (1)	.07
Saturation (λ_n)	-716	(.05)	(38)	(.04)	-377	(.00)	(.05)	(1)	(.20)
Saturation (73)	(693)	(.26)	(241)	(.24)	(390)	(.31)	(.14)	(3)	(1.46)
Control Mean	2044	7.31	878	6.5	1125	6.56	2.55	2	3.68
Treatment Effect (%)	9.7	6.2	-1.3	1.3	6.2	6.4	.1	-49.0	-3.4
Joint F-Test (p-value)	.091	.200	.652	.473	.436	.449	.195	.275	.860
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4076	4076	4076	4073	4076	4076	4110	4090	139
Panel B: Females									
Treatment (λ_1)	50	.03	20	.03	19	.05	.05	-0	18
Cost Sharing ())	(141)	(.07)	(42)	(.05)	(92)	(.08)	(.04)	(0)	(.62)
Cost Sharing (λ_2)	(131)	.00	(47)	(05)	-35 (79)	(08)	(04)	(1)	(42)
Saturation (λ_2)	-1429*	55	-307	27	-849	61	.28	-3	-2.15
(0)	(766)	(.36)	(366)	(.38)	(533)	(.48)	(.24)	(4)	(3.89)
Control Mean	1655	7.13	725	6.33	844	6.33	2.58	1	3.22
Treatment Effect (%)	3.0	3.1	2.7	3.1	2.2	4.7	1.8	-66.7	-19.4
Joint F-Test (p-value)	0.154	0.207	0.559	0.363	0.293	0.337	0.206	0.488	0.123
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2102	2102	2090	2095	2100	2100	2104	2101	42
Panel C: Males			12						
Treatment (λ_1)	345	.09	-43	01	(145)	.08	04	-2	.01
Cost Sharing ()a)	(242)	(.08)	(80)	(.08)	-46	- 04	(.05)	(1)	(.30)
Cost bharing (N2)	(227)	(.08)	(55)	(.06)	(120)	(.08)	(.05)	(1)	(.28)
Saturation (λ_3)	-138	07	-254	27	5	.02	.04	3	1.76
	(1228)	(.46)	(462)	(.47)	(674)	(.49)	(.22)	(6)	(1.30)
Control Mean	2440	7.49	1028	6.66	1403	6.79	2.53	4	3.76
Treatment Effect (%)	14.2	9.0	-4.2	6	8.5	7.9	-1.7	-46.9	1.1
Joint F-Test (p-value)	0.392	0.660	0.789	0.931	0.869	0.863	0.665	0.406	0.477
Number Observations	1.000	1.000	1.000	1.000	1.000	1.000	2006	1.000	1.000
Rumber Observations	1374	1374	1300	1300	1370	1370	2000	1303	51
Panel D: Older than 12	F 77 * * *	00***	<i>c</i> o	1.488	009***	00***	00	1	10
Treatment (λ_1)	575	.22	(52)	.14.	(102)	.22	.06	-1 (1)	18
Cost Sharing (λ_2)	-398*	15*	-52	08	-186*	16*	07	2**	.58
0.000 0.0000-08 (0.2)	(204)	(.08)	(48)	(.05)	(100)	(.08)	(.04)	(1)	(.39)
Saturation (λ_3)	263	.09	54	.14	22	.03	01	-1	.55
	(975)	(.38)	(296)	(.31)	(510)	(.43)	(.16)	(4)	(1.85)
Control Mean	1873	7.21	818	6.39	972	6.45	2.48	1	3.33
Treatment Effect (%)	30.7	20.2	8.4	13.2	30.2	19.6	2.4	-41.2	-19.9
Treatment FDB <i>a</i> -value	0.032	0.025	122	0.110	0.055	0.051	100	166	203
Number Observations	2051	2051	2042	2041	2052	2052	2058	2048	.230
Panel F: 10 on Vounaar			-						
Treatment (λ_1)	-96	- 06	-73	- 09*	-100	- 05	- 05	-2	05
	(132)	(.06)	(62)	(.05)	(93)	(.07)	(.05)	(1)	(.34)
Cost Sharing (λ_2)	` 96´	.06	`55 [´]	.08	60	.07	02	-0	25
	(134)	(.05)	(55)	(.05)	(88)	(.07)	(.04)	(1)	(.29)
Saturation (λ_3)	-1791***	70***	-643**	70**	-820*	57*	.24	-0	.06
<u><u> </u></u>	(676)	(.26)	(312)	(.27)	(443)	(.32)	(.19)	(6)	(1.72)
Control Mean Treatment Effect (%)	2204	6.5	937	0.59	1262	6.67 5.6	2.62	3 52.0	3.84
Joint F-Test (p-value)	0.074	0.065	0.222	0.038	0.302	0.304	0.080	0.385	0.834
Treatment FDR o-value	.743	.743	.743	.743	.743	.743	.743	.743	.743
Number Observations	1974	1974	1982	1980	1973	1973	1999	1989	60

Table 4: Consumption - KLPS-4 (trimmed)

Notes: Analysis pools the last 12 months of retrospective data from KLPS-4. Columns (1)-(6), (8), and (9) are trimmed at the top 1% of observations. See Section 5 for notes on outcome construction. See Table 2 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3) Per-Capita	(4) Log Per-Capita	(5) Per-Capita	(6) Log Per-Capita	(7)	(8)	(9)
	Per-Capita Consumption	Log Per-Capita Consumption	Food Consumption	Food Consumption	Non-Food Consumption	Non-Food Consumption	Average Meals Eaten	Household Tax Spending	Log Household Tax Spending
Panel A: Full Sample									tan of many
Treatment (λ_1)	1163*	.33**	278	.17	411**	.35**	.01	7	1.84
(->	(664)	(.14)	(183)	(.12)	(193)	(.13)	(.06)	(5)	(.)
Cost Sharing (λ_2)	-405	17	5	07	-490**	31**	.00	-9**	55
	(562)	(.14)	(230)	(.14)	(196)	(.12)	(.06)	(4)	(.)
Saturation (λ_3)	9526	1.75	-1819	.28	1467	1.11	09	11	55.56
	(6328)	(1.42)	(2342)	(1.29)	(1089)	(.73)	(.50)	(22)	(.)
Control Mean	2878	7.39	904	6.53	1222	6.48	2.23	5	3.92
Treatment Effect (%)	40.4	28.6	30.7	15.7	33.6	29.7	.4	124.9	104.5
Joint F-Test (p-value)	.313	.141	.022	.437	.095	.040	.987	.139	
Treatment FDR q-value	.145	.106	.163	.163	.106	.106	.287	.163	1.000
Number Observations	718	718	718	718	718	718	725	717	30
Panel B: Females									
Treatment (λ_1)	707	.19	303	.17	12	.08	.04	1	2.98
	(585)	(.15)	(220)	(.15)	(259)	(.18)	(.09)	(5)	(.)
Cost Sharing (λ_2)	-549	20	-73	16	-164	17	06	-3	-3.17
	(576)	(.16)	(265)	(.16)	(225)	(.17)	(.10)	(5)	(.)
Saturation (λ_3)	3007	1.43	232	1.73	936	.88	.22	-2	.00
	(4703)	(1.17)	(2578)	(1.36)	(1425)	(1.06)	(.76)	(19)	(.)
Control Mean	2144	7.23	809	6.42	1023	6.37	2.34	4	3.99
Treatment Effect (%)	33.0	17.1	37.4	15.7	1.1	8.1	1.8	27.5	138.0
Joint F-Test (p-value)	0.679	0.500	0.236	0.594	0.781	0.657	0.937	0.936	
Ireatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	371	371	308	308	371	371	3/1	308	14
Panel C: Males									
Treatment (λ_1)	1581	.46**	248	.16	807*	.61**	03	12	13
	(1175)	(.23)	(228)	(.17)	(420)	(.23)	(.11)	(10)	(.)
Cost Sharing (λ_2)	-246	16	57	01	-808**	44**	.06	-16*	2.92
	(895)	(.20)	(266)	(.17)	(321)	(.19)	(.10)	(9)	(.)
Saturation (λ_3)	14018	2.10	-3016	53	1959	1.46	27	20	.00
Control Moon	(8993)	(1.89)	(2369)	(1.40)	(1833)	(1.00)	(.34)	(37)	(.)
Transforment Effect (07)	3400	7.00	960	0.01	1090	0.07	2.10	200.0	0.04 12.6
Ireatment Effect (%)	40.0	0.265	20.0	13.2	0.100	47.4	-1.5	200.9	-13.0
Trootmont FDB a value	354	186	300	300	186	103	658	254	
Number Observations	347	347	350	350	347	347	354	340	16
	041	110	000	000	041	110	004	045	10
Panel D: Older than 12	2000				10000000				
Treatment (λ_1)	2990***	.83***	731***	.58***	1068***	.77***	.03	17	11.19
(1, 1, 0)	(781)	(.19)	(251)	(.14)	(350)	(.22)	(.13)	(10)	(.)
Cost Sharing (λ_2)	-715	34	-408	30	-945	34	00	-25	-0.05
Saturation $()$	10744**	(.17) 2.81**	(303) 850	(.14)	(340)	(.20)	(.12)	25	(.)
Saturation (X3)	(7588)	(1.53)	(2008)	(1.92)	(1747)	(1.24)	(67)	(46)	.00
Control Mean	2160	7.2	840	6.44	1046	6.29	2.13	8	3.55
Treatment Effect (%)	138.4	60.5	87.0	45.5	102.1	57.3	1.2	203.2	250.1
Joint F-Test (p-value)	0.003	0.000	0.003	0.002	0.024	0.008	0.800	0.150	200.1
Treatment FDR q-value	.001	.001	.005	.001	.004	.002	.268	.052	1.000
Number Observations	351	351	350	350	351	351	354	350	19
D									
Tranet E: 12 or 10unger	196	00	69	15	97	02	01	1	22.62
freatment (X1)	(760)	03	(170)	(12)	(202)	(14)	(08)	(4)	-22.02
Cost Sharing ()a)	-522	- 11	275	10	-162	- 14	03	(4)	67
Concouring (v5)	(540)	(14)	(232)	(15)	(214)	(15)	(08)	(3)	
Saturation (λ_2)	-2759	57	-2589	78	1201	.74	.51	4	.00
S	(4087)	(1.14)	(2025)	(1.35)	(1215)	(.89)	(.55)	(16)	(.)
Control Mean	3375	7.53	947	6.59	1348	6.62	2.3	3	4.85
Treatment Effect (%)	-14.4	-9.3	-6.6	-15.7	-6.5	1.6	.4	-32.4	
Joint F-Test (p-value)	0.662	0.658	0.321	0.698	0.415	0.434	0.819	0.925	
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	367	367	368	368	367	367	371	367	11

Table 5: Consumption - KLPS-3 (trimmed)

Notes: Analysis pools the last 12 months of retrospective data from KLPS-3. Columns (1)-(6), (8), and (9) are trimmed at the top 1% of observations. See Section 5 for notes on outcome construction. See Table 2 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	()		Per-Capita	Log Per-Capita	Per-Capita	Log Per-Capita	(.)	(-)	(-)
	Por Conito	Log Por Capita	Food	Food	Non Food	Non Food	Average	Household	Log Household
	Ter-Capita	Log Ter-Capita	Tood .	C	C	Non-Food	Average	Trousenoid	The second second
	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Meals Eaten	Tax Spending	Tax Spending
Panel A: Full Sample									
Treatment (λ_1)	172	.06	32	.03	116*	.08	03	-0	.13
	(132)	(.04)	(44)	(.04)	(62)	(.05)	(.03)	(1)	(.22)
Cost Sharing (λ_2)	-79	03	-3	02	-43	03	.00	-0	12
0 000 0000008 (0.2)	(130)	(05)	(50)	(04)	(64)	(05)	(03)	(n)	(22)
$\mathbf{S}_{\text{struction}}(\mathbf{\lambda})$	177	(.00)	(00)	(.04)	(04)	(.00)	(.00)	(0)	(.22)
Saturation (A3)	(1104)	00	-400	14	(000)	.00	08	-2	00.
	(1124)	(.35)	(401)	(.30)	(389)	(.29)	(.13)	(4)	(1.09)
Control Mean	2172	7.33	879	6.51	1100	6.56	2.52	2	3.62
Treatment Effect (%)	7.9	6.2	3.6	3.2	10.6	7.4	-1.2	-7.5	12.3
Joint F-Test (p-value)	.576	.399	.216	.633	.266	.430	.749	.577	.882
Treatment FDR q-value	.779	.779	.779	.779	.779	.779	.779	.779	.779
Number Observations	5654	5654	5654	5651	5654	5654	5781	5759	190
rumber Observations	0004	0004	5004	5051	0004	0004	5761	0103	130
Panel B: Females									
Treatment (λ_1)	47	.05	47	.06	8	.05	00	-0	05
(-)	(134)	(.06)	(50)	(.04)	(87)	(.08)	(.04)	(1)	(.41)
Cost Sharing ()	86	03	41	04	2	00	01	0	79*
Cost bharing (12)	(159)	(00)	(FC)	(07)	(0F)	(00)	(04)	(1)	(41)
a	(153)	(.06)	(00)	(.05)	(85)	(.08)	(.04)	(1)	(.41)
Saturation (λ_3)	-1413	33	-352	01	-685	28	12	-6*	-1.75
	(952)	(.35)	(379)	(.30)	(545)	(.45)	(.26)	(4)	(3.00)
Control Mean	1727	7.15	738	6.35	873	6.34	2.56	1	3.44
Treatment Effect (%)	2.7	5.0	6.3	5.5	.9	5.0	1	-29.0	-5.3
Joint F-Test (p-value)	0.316	0.386	0.321	0.591	0.472	0.601	0.973	0.383	0.182
Treatment FDB a value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mathematic PDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2880	2880	2870	2873	2880	2885	2919	2915	60
Panel C: Males									
Treatment (λ_1)	200	07	18	01	227*	10	- 05	-0	21
freatment (XI)	(248)	(07)	(67)	(.06)	(120)	(07)	(.04)	(1)	(26)
(1, 1, 2)	(240)	(.07)	(07)	(.00)	(120)	(.07)	(.04)	(1)	(.20)
Cost Sharing (λ_2)	-89	04	33	00	-88	05	.02	-1	44
	(222)	(.07)	(65)	(.06)	(119)	(.07)	(.04)	(1)	(.23)
Saturation (λ_3)	1467	.16	-533	24	706	.35	05	1	1.00
	(1942)	(.57)	(538)	(.48)	(728)	(.48)	(.17)	(6)	(1.18)
Control Mean	2638	7.53	1025	6.68	1338	6.78	2.49	3	3.68
Treatment Effect (%)	11.3	7.9	1.8	8	16.0	0.8	2.20	1.5	10.1
List E Test (n relue)	0.670	0.745	0.552	0.026	0.202	0.570	0.600	-1.5	0.000
Joint F-Test (p-value)	0.070	0.745	0.000	0.950	0.302	0.579	0.009	0.402	0.280
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2768	2768	2778	2778	2769	2769	2862	2844	130
Panel D: Older than 19									
Tunei D. Otaer than 12	0.0 4888	00***	1.00***	10888	011888	0.0***	01	1	20
freatment (λ_1)	664	.22	162	.18	311	.20	01	1	.30
	(188)	(.06)	(53)	(.05)	(81)	(.06)	(.03)	(1)	(.45)
Cost Sharing (λ_2)	-312	13*	-104*	12**	-166*	12*	00	-1	.12
	(207)	(.07)	(61)	(.05)	(89)	(.07)	(.03)	(1)	(.35)
Saturation (λ_3)	2247	.56	-16	.38	916	.54	31*	0	.77
	(1713)	(.48)	(402)	(.29)	(605)	(.44)	(.16)	(5)	(1.67)
Control Mean	1926	7.22	804	6.4	980	6.44	2.46	2	3.5
Transferrent Effect (07)	24 5	20.2	20.1	16.7	21.7	10.6	2.40	24.0	0.0 06.6
Ireatment Effect (%)	34.5	20.3	20.1	10.7	31.7	18.0	4	34.9	20.0
Joint F-Test (p-value)	0.006	0.004	0.013	0.005	0.004	0.013	0.203	0.600	0.607
Treatment FDR q-value	.002	.002	.003	.002	.002	.002	.346	.229	.229
Number Observations	2857	2857	2843	2842	2855	2855	2913	2903	110
D									
Funei E: 12 of Tounger		0.0	00	0.0*	20	00	05		00
Treatment (λ_1)	-224	06	-00	08*	-28	02	05	-1	.03
	(177)	(.05)	(60)	(.04)	(81)	(.06)	(.04)	(1)	(.30)
Cost Sharing (λ_2)	33	.01	50	.03	24	.02	.02	0	20
	(134)	(.05)	(63)	(.05)	(79)	(.06)	(.04)	(1)	(.30)
Saturation (λ_2)	-1983**	68**	-899**	64**	-725*	39	.10	-5	03
((777)	(28)	(428)	(31)	(408)	(30)	(20)	(5)	(1.60)
Control Moon	2401	7.44	050	6.61	1200	6.66	2.59	2	2 79
The second secon	2401	1.44	900	0.01	1209	0.00	2.00	40.0	0.12
Treatment Effect (%)	-9.3	-0.5	-0.9	-8.9	-2.3	-2.2	-2.1	-40.3	2.8
Joint F-Test (p-value)	0.074	0.103	0.220	0.125	0.341	0.646	0.472	0.358	0.890
Treatment FDR q-value	.681	.681	.681	.681	.681	.681	.681	.681	.698
Number Observations	2746	2746	2759	2757	2748	2748	2815	2803	78

Table 6: Consumption - Pooled (trimmed, including SCY and VocEd)

 Notes:
 Analysis pools the last 12 months of retrospective data from KLPS-3 and KLPS-4.
 Columns (1)-(6), (8), and (9) are trimmed at the top 1% of observations.
 Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voucher. See Section 5 for notes on outcome construction.
 See Table 2 for additional notes on the regression specification.

 participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voucher.
 See Section 5 for notes on outcome construction.
 See Table 2 for additional notes on the regression specification.

 psecification.
 Observations are weighted to be representative of the original PSDP population, and include KLPS population weights and KLPS intensive tracking weights.
 * denotes statistical significance at 10 pct.

	(1)	(2)	(3)	(4)	(5)	(6)
	Per-Capita	Log Per-Capita	Per-Capita	Log Per-Capita	Per-Capita	Log Per-Capita
	Household Wealth	Household Wealth	Household Assets	Household Assets	Livestock Ownership	Livestock Onwership
Dour al A. Full Coursels	Household wearth	Household wearth	Household Assets	Household Assets	Livestock Ownership	Livestock Onwership
Panei A: Full Sample					_	
Treatment (λ_1)	69	.10	61	.10	-5	.12
	(50)	(.07)	(45)	(.06)	(6)	(.12)
Cost Sharing (λ_2)	-60	09*	-47	10**	5	.10
	(39)	(.05)	(33)	(.05)	(7)	(.13)
Saturation (λ_2)	-394*	- 40	-383**	- 26	-113***	-1.38**
Saturation (A3)	(215)	(32)	(180)	(20)	(42)	(65)
Control Moon	(210)	(.02)	(100)	(.23)	(42)	(.00)
Control Mean	522	0.80	400	5.71	23	3.32
Treatment Effect (%)	13.3	9.2	13.3	9.6	-8.8	11.2
Joint F-Test (p-value)	.041	.180	.029	.153	.055	.021
Treatment FDR q-value	.362	.362	.362	.362	.362	.362
Number Observations	4085	4084	4085	4084	4093	2208
Panel B: Females						
Treatment (λ_1)	36	.08	29	.09	-8	.15
	(51)	(.07)	(47)	(.07)	(5)	(.14)
Cost Sharing (λ_2)	-45	12*	-31	13*	2	09
0 ()	(46)	(.07)	(41)	(.06)	(6)	(.17)
Saturation (λ_2)	-489*	- 37	-485**	- 28	-83**	-1 68**
Saturation (X3)	(246)	(38)	(222)	(27)	(27)	(70)
<u>()</u> ())((240)	(.50)	(222)	(.51)	(51)	(.10)
Control Mean	430	5.71	380	5.0	48	3.39
Treatment Effect (%)	8.3	8.0	7.5	8.4	-17.1	14.0
Joint F-Test (p-value)	0.072	0.144	0.038	0.108	0.112	0.039
Treatment FDR q-value	.693	.693	.693	.693	.693	.693
Number Observations	2103	2103	2101	2101	2106	1127
Panel C: Males						
Treatment (λ_1)	102	.11	93	.11	-1	.09
	(97)	(.11)	(89)	(.11)	(10)	(.16)
Cost Sharing (λ_2)	-76	05	-64	07	8	.26
0 ()	(81)	(.07)	(71)	(.07)	(14)	(.17)
Saturation (λ_{a})	-317	- 43	-299	- 24	-136**	-1.09
Saturation (X3)	(262)	(20)	(200)	(27)	(65)	(24)
	(303)	(.30)	(328)	(.37)	(03)	(.04)
Control Mean	609	5.95	535	5.83	59	3.05
Treatment Effect (%)	16.8	10.3	17.4	10.7	-1.8	8.4
Joint F-Test (p-value)	0.118	0.457	0.122	0.549	0.137	0.097
Treatment FDR q-value	.911	.911	.911	.911	.911	.911
Number Observations	1982	1981	1984	1983	1987	1081
Panel D: Older than 12						
Treatment (λ_1)	253***	.23**	222***	.23**	-1	.23
	(89)	(.10)	(82)	(.09)	(9)	(.16)
Cost Sharing (λ_2)	-186**	18**	-153*	19**	-0	.05
,	(86)	(.09)	(78)	(.08)	(8)	(.18)
Saturation (λ_2)	22	03	6	23	-142***	-1 90**
Saturation (A3)	(402)	(52)	(262)	(50)	(53)	(82)
Control Moor	(403)	(.52)	(303)	(.50)	(55)	(.03)
Control Mean	404	5.70	402	5.04	54	3.41
Treatment Effect (%)	54.6	21.1	55.2	21.1	-1.9	20.8
Joint F-Test (p-value)	0.028	0.103	0.034	0.069	0.040	0.011
Treatment FDR q-value	.026	.026	.026	.026	.225	.066
Number Observations	2048	2048	2047	2047	2051	1148
D LE 10 V						
Panel E: 12 or Younger						
Treatment (λ_1)	-93	02	-80	01	-8	.00
	(59)	(.09)	(54)	(.08)	(7)	(.15)
Cost Sharing (λ_2)	44	02	37	03	11	.11
	(49)	(.06)	(43)	(.06)	(9)	(.16)
Saturation (λ_3)	-976***	-1.05***	-906***	91**	-117*	-1.11
	(203)	(37)	(267)	(30)	(62)	(81)
Control Moon	(233)	5.0	(201)	5.70	(02) 51	2.62
Control Mean	579	0.9	919	0.79	01 15 5	3.03
Treatment Effect (%)	-16.1	-2.4	-15.5	-1.0	-15.5	.4
Joint F-Test (p-value)	0.012	0.033	0.011	0.112	0.253	0.495
Treatment FDR q-value	.740	1.000	.740	1.000	.740	1.000
Number Observations	1985	1984	1986	1985	1989	1027

Table 7: Household Wealth - KLPS-4 (trimmed)

Notes: Analysis uses KLPS-4 data. Results are trimmed at the top 1% of observations. See Section 6 for notes on outcome construction. Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming on average compared to Group 3. Reported estimates for Older than 12 and Male are constructed from a single regression including treatment-female, cost-sharing-female, and saturation-female interaction terms. Reported estimates for Older than 12 and 12 or Younger also report results using a single regression, including an indicator for those older than 12 at baseline and analogous interaction terms to Panels B and C. Covariates follow Baird et al. (2016) and include controls for baseline 1998 primary school population, geographic zone of the school, survey wave and month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average school test score on the 1996 Busia District mock exams, total primary school pupils within 6 km, and a cost-sharing school indicator. Those treated in a separate wocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-3 and KLPS-4 sample. These treated in a separate small grant intervention (SCY) which occurred after KLPS-4 sample. Observations are weighted to be representative of the original PSDP population, and include KLPS population weights, SCY and VocEd control group weights, and KLPS intensive tracking weights. Standard errors are clustered at the 1998 school level. The Joint F-Test (p-value) gives the p-value associated with an F-test on the joint significance of the treatment, cost-sharing, and saturation coefficients against the null hypothesis that all three coefficients are jointly equal to zero. The FDR adjustment is carried out across the six outcomes within this family separately by panel (full sample, females, males, older than 12, and 12 or younger). * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(2)	(4)	(5)	(6)
	(1) Don Conito	(2) Log Den Conito	(ə) Don Conito	(4) Log Don Conito	(0) Der Conite	(0) Log Don Conito
	Fer-Capita	Log Fei-Capita Household Weelth	Fer-Capita	Log Fei-Capita	Fer-Capita	Log Fer-Capita
Danal A. Eull Camula	nousenoid wearth	nousenoid wearth	nousenoid Assets	nousenoid Assets	Livestock Ownership	Livestock Unwership
Treatment ().)	26	06	40	07	4	16
Treatment (λ_1)	-50	(90.)	(152)	.01	(12)	.10
Cost Sharing ()	(104) 185*	(.00)	(102) 172*	(.08)	(13)	(.13)
$\cos \sin \sin \sin (\lambda_2)$	(101)	12	-175	13	-12 (14)	(14)
Saturation (λ_{-})	(101)	(.00)	(33)	(.00)	(14) 100***	(.14)
Saturation (λ_3)	-900	07	-7.04 (5.41)	40	-199 (66)	-1.51
Control Moon	(000)	5.04	(041)	(.30)	(00)	2.50
Treatment Effect (%)	-4.1	5.0	-5.0	6.4	63	14.8
Ioint E-Test (n-value)	-4.1	072	-0.0	071	019	019
Treatment FDP a value	1.002	1.000	1.000	1.000	1.000	1.000
Number Observations	4125	1.000	4125	1.000	4125	2250
Number Observations	4100	4104	4100	4104	4100	2250
Panel B: Females						
Treatment (λ_1)	15	.06	26	.07	-12	.14
	(121)	(.08)	(118)	(.08)	(9)	(.14)
Cost Sharing (λ_2)	-47	12	-56	13*	9	06
	(76)	(.07)	(74)	(.07)	(9)	(.18)
Saturation (λ_3)	-1114	62	-974	48	-141**	-1.76**
	(859)	(.51)	(861)	(.51)	(71)	(.69)
Control Mean	501	5.75	451	5.64	50	3.4
Treatment Effect (%)	2.9	5.6	5.8	6.9	-23.1	12.8
Joint F-Test (p-value)	0.481	0.169	0.513	0.128	0.263	0.031
Treatment FDR q-value	e 1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2112	2112	2112	2112	2112	1133
Panel C: Males						
Treatment (λ_1)	-86	.06	-106	.06	20	.18
	(322)	(.14)	(318)	(.14)	(23)	(.17)
Cost Sharing (λ_2)	-314	12	-281	13	-32	.11
8(5)	(192)	(.09)	(185)	(.09)	(27)	(.17)
Saturation (λ_3)	-852	71	-605	48	-247***	-1.30
(3)	(949)	(.49)	(931)	(.46)	(90)	(.80)
Control Mean	1252	6.12	1161	6.01	90	3.77
Treatment Effect (%)	-6.9	6.1	-9.2	5.9	22.4	16.6
Joint F-Test (p-value)	0.127	0.264	0.184	0.332	0.026	0.101
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2023	2022	2023	2022	2023	1117
Panel D: Olaer than 12	151	10*	144	20**	0	20
Treatment (λ_1)	151 (190)	.19*	144	.20**	8	.29
$C_{1} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{2$	(138)	(.10)	(125)	(.10)	(21)	(.19)
Cost Sharing (λ_2)	-290.	20	-201	23	-28	04
\mathcal{C}_{-1}	(119)	(.09)	(108)	(.09)	(21)	(.19)
Saturation (λ_3)	-020	19	-410	.07	-209.	-1.90
Control Moon	(071)	(.34)	(040)	(.32)	(105)	(.91)
Treatment Effect (07)	060	0.83 17 9	008	0./1 18.6	11	0.49 05 0
Leist E Test (n and has)	22.1	17.8	23.0	18.0	9.7	20.0
Treatment EDP a value	0.104	0.126	0.117	0.000	502	0.025
Number Observations	2071	.214	.201	.214	.002	.214
Number Observations	2071	2071	2071	2071	2071	1108
Panel E: 12 or Younger						
Treatment (λ_1)	-160	03	-162	03	2	.03
	(233)	(.10)	(235)	(.10)	(16)	(.16)
Cost Sharing (λ_2)	-116	07	-118	07	2	.07
	(160)	(.08)	(161)	(.08)	(17)	(.16)
Saturation (λ_3)	-1321*	-1.29***	-1101	-1.10***	-220**	-1.33*
	(711)	(.41)	(713)	(.41)	(86)	(.79)
Control Mean	1040	6.02	977	5.92	63	3.68
Treatment Effect (%)	-15.3	-3.4	-16.5	-2.6	3.3	2.8
Joint F-Test (p-value)	0.114	0.013	0.166	0.044	0.099	0.372
Treatment FDR q-value	e 1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2011	2010	2011	2010	2011	1049

Table 8: Household Wealth - KLPS-4 (untrimmed)

Notes: Analysis uses KLPS-4 data. Results are untrimmed. See Section 6 for notes on outcome construction. See Table 7 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1) D G H	(2)	(3) D C ::	(4)	(5) D C ::	(6)
	Per-Capita Household Wealth	Log Per-Capita Household Wealth	Per-Capita Household Assets	Log Per-Capita Household Assets	Per-Capita Livestock Ownership	Log Per-Capita Livestock Onwership
Panel A: Full Sample	Household wearth	nousenoid weath	Household Assets	Household Assets	Livestock Ownership	Livestock Onwership
Treatment (λ_1)	21	.02	19	.03	-10*	06
(-)	(39)	(.06)	(34)	(.05)	(6)	(.09)
Cost Sharing (λ_2)	3	00	12	01	7	.13
	(33)	(.04)	(26)	(.04)	(7)	(.10)
Saturation (λ_3)	-377	53*	-317	32	-148***	-2.07***
	(227)	(.30)	(198)	(.27)	(41)	(.57)
Control Mean	531	5.86	465	5.74	58	3.62
Ireatment Effect (%)	3.9	2.1	4.0	2.9	-17.9	-0.7
Treatment FDB a-value	1.000	1.000	1.000	1.000	.005	1.000
Number Observations	4949	4948	4949	4948	4950	2747
	1010	1010	1010	1010	1000	2.1.1
Panel B: Females	11	04	4	05	0	09
Treatment (λ_1)	(42)	.04	(20)	.05	-9	.02
Cost Sharing ().	-28	- 06	-12	- 06	-0	- 08
$\cos t \sin t \sin t \sin (\pi_2)$	(35)	(05)	(31)	(04)	-0 (7)	(14)
Saturation (λ_2)	-546**	72**	-492**	51	-131***	-2.68***
	(224)	(.32)	(211)	(.31)	(40)	(.66)
Control Mean	452	5.73	397	5.61	53	3.46
Treatment Effect (%)	2.5	4.3	.9	4.8	-17.4	2.4
Joint F-Test (p-value)	0.050	0.038	0.072	0.077	0.007	0.001
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2516	2516	2514	2514	2518	1397
Panel C: Males						
Treatment (λ_1)	31	00	34	.01	-11	15
	(62)	(.08)	(56)	(.08)	(9)	(.13)
Cost Sharing (λ_2)	29	.05	33	.04	14	.32**
	(55)	(.06)	(45)	(.05)	(13)	(.16)
Saturation (λ_3)	-235	37	-170	16	-162**	-1.54*
	(295)	(.37)	(258)	(.35)	(64)	(.78)
Control Mean	617	6	538	5.88	63	3.78
Treatment Effect (%)	5.0	1	6.4	1.1	-17.8	-16.2
Joint F-lest (p-value)	0.449	0.533	0.320	0.732	0.075	0.096
Number Observations	2422	2422	2425	2424	1.000	1.000
Number Observations	2433	2432	2430	2434	2402	1550
Panel D: Older than 12					- 0	
Treatment (λ_1)	161**	.12	140**	.13*	-10	05
Cost Chaming ()	(60)	(.08)	(56)	(.07)	(8)	(.13)
Cost Sharing (λ_2)	-92 (64)	07	-00	07	-3 (7)	.04
Saturation (λ_{2})	22	- 19	(33)	(.07)	-195***	-2 65***
Saturation (X3)	(424)	(.56)	(400)	(.56)	(50)	(.69)
Control Mean	477	5.78	409	5.65	59	3.52
Treatment Effect (%)	33.7	11.6	34.3	12.1	-16.9	-5.5
Joint F-Test (p-value)	0.059	0.331	0.056	0.325	0.000	0.003
Treatment FDR q-value	.046	.142	.046	.129	.206	.299
Number Observations	2504	2504	2503	2503	2500	1441
Panel E: 12 or Younger	•					
Treatment (λ_1)	-103**	07	-90*	05	-11	11
< - <i>/</i>	(50)	(.07)	(46)	(.07)	(7)	(.12)
Cost Sharing (λ_2)	74*	.04	62*	.03	18*	.20*
	(42)	(.05)	(35)	(.05)	(10)	(.12)
Saturation (λ_3)	-896***	-1.07***	-807***	84***	-127**	-1.71**
	(254)	(.30)	(230)	(.31)	(59)	(.72)
Control Mean	586	5.94	524	5.83	54	3.71
Treatment Effect (%)	-17.5	-7.1	-17.1	-5.4	-20.1	-11.5
Joint F-Test (p-value)	0.008	0.008	0.008	0.067	0.107	0.053
Treatment FDR q-value	.194	.278	.194	.278	.194	.278
Number Observations	2393	2392	2394	2393	2397	1273

Table 9: Household Wealth - KLPS-4 (trimmed, including SCY and VocEd)

Notes: Analysis uses KLPS-4 data. Results are trimmed at the top 1% of observations. Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voncher. See Section 6 for notes on outcome construction. See Table 7 for notes on the regression specification. Observations are weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			Individual	Log Individual	Self-	Log Self-	Individual	Log Individual	Taxes on	Log Taxes on
	Individual	Log Individual	Wage	Wage	Employment	Employment	Farming	Farming	Individual Wages	Individual Wages
	Earnings	Earnings	Earnings	Earnings	Profit	Profit	Profits	Profits	and Profits	and Profits
Panel A. Eull Sample	Lainingo	Lariningo	Lariningo	Larnings	TIOIII	TION	1101103	1 101115	and Fronts	and Froms
Transfer A. Full Sumple	20	00	01	07	41*	10	0	06	0	91
Treatment (λ_1)	80	.09	81	.07	41	.12	-0	.00	9	.21
	(76)	(.06)	(68)	(.07)	(24)	(.09)	(2)	(.11)	(10)	(.16)
Cost Sharing (λ_2)	-32	04	-63	06	-7	05	2	.12	-12	.06
	(76)	(.06)	(67)	(.08)	(25)	(.10)	(2)	(.13)	(9)	(.15)
Saturation (λ_3)	-366	14	-280	.27	255	.09	-23*	-1.92**	-49	.28
,	(463)	(.28)	(506)	(.43)	(195)	(.64)	(12)	(.83)	(40)	(.94)
Control Mean	1218	6.73	887	6.97	212	6.13	9	4.46	51	5.45
Treatment Effect (07)	6.5	0.10	0.0	6.0	10.2	10.0	20	6.9	17.9	10.7
Li + D T + ()	0.5	0.0	9.2	0.0	19.5	10.9	-3.0	0.2	11.2	10.7
Joint F-Test (p-value)	.427	.297	.310	.810	.314	.608	.308	.035	.117	.307
Treatment FDR q-value	.609	.609	.609	.609	.609	.609	.803	.763	.609	.609
Number Observations	13624	7698	13628	5103	13638	2652	13707	780	13655	1381
Panel B. Females										
Treatment ()	41	12	22	11	20	08	1	19	7	04
Treatment (λ_1)	41	.15	22	.11	32	.08	-1	.12	-1	.04
a . a . ())	(62)	(.10)	(68)	(.12)	(20)	(.14)	(3)	(.18)	(9)	(.28)
Cost Sharing (λ_2)	-0	03	-49	11	13	07	-0	.09	9	01
	(67)	(.10)	(63)	(.11)	(31)	(.18)	(3)	(.15)	(10)	(.26)
Saturation (λ_3)	-270	33	2	.88	151	35	-31**	-2.05*	-57	1.74
	(403)	(.46)	(361)	(.69)	(206)	(.99)	(15)	(1.06)	(59)	(1.55)
Control Mean	674	6.2	507	6.64	123	5.61	9	4.17	27	5.02
Treatment Effect (%)	6.0	12.4	4.4	10.7	25.8	8.2	-13 7	11.0	-24.6	4.0
Loint F Test (p. volue)	0.550	0.206	0.994	0.567	0.260	0.2	0.174	0.027	0.752	0.712
Joint F-Test (p-value)	0.550	0.200	1.000	0.007	0.300	0.000	0.174	0.027	0.755	0.712
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6826	3175	6826	1807	6825	1275	6816	444	6817	511
Panel C: Males										
Treatment (λ_1)	118	06	138	04	51	13	1	- 01	24	30
freatment (XI)	(122)	(07)	(110)	(00)	(48)	(12)	(2)	(21)	(22)	(18)
$G \rightarrow G \rightarrow (1)$	(133)	(.07)	(110)	(.09)	(40)	(.13)	(3)	(.21)	(22)	(.10)
Cost Snaring (λ_2)	-03	04	-11	02	-27	03	4	.15	-33	.12
	(119)	(.08)	(112)	(.10)	(43)	(.13)	(3)	(.20)	(20)	(.20)
Saturation (λ_3)	-439	05	-502	02	340	.40	-16	-1.83*	-41	27
	(643)	(.34)	(780)	(.52)	(264)	(.75)	(16)	(1.06)	(89)	(1.39)
Control Mean	1728	7.11	1243	7.16	296	6.56	9	4.88	74	5.68
Treatment Effect (%)	6.8	6.2	11.1	4.0	17.1	12.5	5.9	-1.4	32.6	26.0
Joint F-Test (p-value)	0.562	0.786	0.266	0.965	0.570	0.669	0.578	0.311	0.110	0.101
Treatment FDR a-value	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6708	4592	6809	2206	6812	1277	6801	226	6929	870
Number Observations	0198	4020	0802	3290	0813	1377	0691	330	0000	810
Panel D: Older than 12										
Treatment (λ_1)	258**	.19**	162*	.20*	70*	.23**	-3	14	37*	.21
(-,	(108)	(.08)	(89)	(.11)	(39)	(.10)	(3)	(.19)	(22)	(.25)
Cost Sharing (λ_{α})	-76	- 01	-105	- 12	6	06	3	08	-42**	- 08
cost sharing (x ₂)	(00)	(07)	(74)	(12)	(38)	(12)	(2)	(18)	(20)	(25)
$\mathcal{C}_{\text{struction}}(\lambda)$	001	(.01)	194	(.12)	(00)	(.12)	(2)	0.10)	(20)	(.20)
Saturation (λ_3)	201	.38	-134	.41	333	.00	-31	-2.95	-20	.05
<u> </u>	(610)	(.49)	(518)	(.00)	(283)	(.82)	(13)	(1.17)	(83)	(1.25)
Control Mean	1177	6.65	846	6.88	244	6.11	9	4.44	44	5.51
Treatment Effect (%)	21.9	17.3	19.2	18.1	28.9	21.0	-30.7	-15.4	84.6	19.3
Joint F-Test (p-value)	0.045	0.041	0.154	0.322	0.173	0.061	0.065	0.104	0.040	0.823
Treatment FDR q-value	.071	.071	.084	.084	.084	.071	.153	.201	.089	.191
Number Observations	6791	4195	6793	2613	6797	1592	6836	436	6799	768
Panel E: 12 or Younger										
Treatment (λ_1)	-75	01	28	02	0	09	2	.29	-13	.35*
	(100)	(.08)	(90)	(.09)	(32)	(.12)	(3)	(.18)	(11)	(.18)
Cost Sharing (λ_2)	4	07	-26	.00	-16	19	1	.17	13	.18
/	(98)	(.08)	(92)	(.09)	(31)	(.16)	(3)	(.20)	(9)	(.17)
Saturation (λ_2)	-820	- 82	-278	36	139	- 97	-15	- 66	-47	1.16
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(705)	(53)	(729)	(48)	(204)	(94)	(18)	(1.01)	(53)	(1.21)
Control Moon	1949	()	(129)	7.02	(204)	(.34)	(10)	(1.01)	(00)	[1.21]
Control Mean	1242	0.82	906	1.03	187	0.2	9	4.45	16	0.38
Treatment Effect (%)	-0.1	-1.5	3.1	-2.1	.2	-9.4	22.9	25.7	-23.2	29.9
Joint F-Test (p-value)	0.675	0.433	0.934	0.843	0.773	0.209	0.494	0.075	0.535	0.031
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6780	3461	6782	2467	6788	1043	6818	337	6803	602

Table 10: Earnings Part 1 - Pooled (trimmed)

Number Observations6/8034016/8224676/88104306183370603002Notes:Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results aretrimmed at the top 1% of observations. See Section 7.1 for notes on outcome constructed.Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming onaverage compared to Group 3. Reported estimates for Female and Male are constructed from a single regression including treatment-female, cost-sharing-female, and saturation-female interaction terms. Reported estimates for low Baird et al. (2016)and include controls for baseline 1998 primary school population, geographic zone of the school, survey wave and month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average schoolterPS-3 are dKLPS-3 and KLPS-4 sample. Those treates small grant intervention (SCX) which occurred after KLPS-3 are dropped from the KLPS-4 sample. Observations are weighted to berepresentative of the original PSDP population, and include KLPS population weights, SCY and Voc2d control group weights, and KLPS intensive tracking weights. Standard errors are clustered at the 1998 school level. The econd-training weights. Standard errors are clustered at the 1998 school level. The econd-training weights. Standard errors are clustered at the 1998 school level. The FDR adjustment is carried out across the 18 outcomes within this family separately by panel (full sample, females, ades, older than 12, and 12 or younger). * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	( )	( )	Individual	Log Individual	Self-	Log Self-	Individual	Log Individual	Taxes on	Log Taxes on
	Individual	Log Individual	Wage	Wage	Employment	Employment	Farming	Farming	Individual Wages	Individual Wages
<b>D</b> 14 <b>D</b> 10 1	Earnings	Earnings	Earnings	Earnings	Profit	Profit	Profits	Profits	and Profits	and Profits
Panel A: Full Sample Treatment ()	954	11*	20	00	110	11	115	11	228	-21
Treatment $(\lambda_1)$	-234 (1064)	.11 (.06)	(1056)	.09	(165)	(10)	-115 (148)	(15)	(6348)	(16)
Cost Sharing $(\lambda_2)$	2360	08	2147	08	-178*	10	391	08	20373*	.06
0.001.0000008(1.2)	(2177)	(.06)	(2147)	(.09)	(102)	(.10)	(415)	(.15)	(11617)	(.15)
Saturation $(\lambda_3)$	2667	.03	2642	.46	1188	34	-1164	-1.83*	5386	.28
	(7933)	(.30)	(7610)	(.48)	(1538)	(.64)	(1523)	(1.03)	(47222)	(.94)
Control Mean	2738	6.81	1983	7.05	656	6.3	98	4.78	137	5.45
Treatment Effect (%)	-9.3	10.4	-1.5	8.7	-16.7	10.8	-117.7	10.3	166.8	18.7
Joint F-Test (p-value)	.754	.337	.774	.661	.314	.505	.772	.294	.348	.307
Number Observations	12704	.933	12704	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	13794	1000	13794	5209	13794	2000	13790	809	13609	1361
Panel B: Females										
Treatment $(\lambda_1)$	143	.10	108	.09	172	.10	-137	.00	-554	.04
Cost Shaving ()	(999)	(.10)	(1009)	(.12)	(170)	(.10)	(171) 702	(.23)	(0242)	(.28)
Cost sharing $(\lambda_2)$	(3062)	02	(3870)	00	(125)	12	(815)	(18)	-940 (11581)	01
Saturation $(\lambda_2)$	-3290	16	-3641	.83	1729	50	-1378	72	-4678	1.74
Saturation (73)	(8910)	(.50)	(8110)	(.74)	(1829)	(.91)	(2205)	(1.24)	(43689)	(1.55)
Control Mean	906	6.27	604	6.69	202	5.7	101	4.52	33	5.02
Treatment Effect (%)	15.8	9.4	17.9	8.2	85.0	9.9	-135.8	.0	-1691.0	4.0
Joint F-Test (p-value)	0.630	0.670	0.720	0.726	0.748	0.767	0.706	0.650	0.999	0.712
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6856	3205	6856	1837	6856	1306	6857	485	6860	511
Panel C: Males										
Treatment $(\lambda_1)$	-565	.12	-99	.09	-381	.12	-86	.25	472	.30
	(1949)	(.08)	(1911)	(.10)	(401)	(.13)	(155)	(.26)	(7047)	(.18)
Cost Sharing $(\lambda_2)$	86	12	255	08	-200*	08	31	25	39190	.12
	(2276)	(.09)	(2285)	(.11)	(117)	(.13)	(112)	(.26)	(25446)	(.20)
Saturation $(\lambda_3)$	7304	.13	7603	.30	709	23	-1007	-2.77**	14730	27
Control Moon	(14628)	(.39)	(14626)	(.30)	(1380)	(.83)	(1077)	(1.33)	(00930)	(1.39)
Control Mean Transforment Effect (07)	4438	1.18	3204	7.20	1078	0.77	90	0.10	232	0.08
Ioint F Tost (p value)	-12.7	0.404	-3.0	0.0	-33.3	0.700	-69.5	22.0	203.5	20.0
Treatment FDR a-value	1.000	1.000	1 000	1 000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6938	4663	6938	3432	6938	1502	6939	384	6949	870
Downl D. Oldow them 10										
Tranet D: Otder than 12 Transforment ()	500	9.4***	489	95**	204	22***	165	11	3007	-91
Treatment $(\lambda_1)$	(2074)	(08)	(2066)	(12)	(209)	(12)	(199)	(20)	(8478)	(25)
Cost Sharing $(\lambda_2)$	470	09	-40	20	-252	03	761	12	39239	08
cost sharing (12)	(2751)	(.08)	(2647)	(.13)	(153)	(.12)	(773)	(.17)	(27218)	(.25)
Saturation $(\lambda_3)$	4098	.58	4278	.82	1658	.53	-1839	-3.14**	14721	.03
(,	(17202)	(.48)	(16987)	(.64)	(1985)	(.74)	(1985)	(1.27)	(67583)	(1.25)
Control Mean	2878	6.72	2293	6.98	484	6.22	101	4.7	197	5.51
Treatment Effect (%)	18.1	21.6	21.0	22.1	42.2	28.8	-162.9	10.2	1640.9	19.3
Joint F-Test (p-value)	0.930	0.040	0.978	0.217	0.424	0.036	0.763	0.046	0.551	0.823
Treatment FDR q-value	.924	.056	.924	.172	.678	.056	.696	.831	.924	.696
Number Observations	6891	4295	6891	2711	6891	1686	6893	493	6898	768
Panel E: 12 or Younger										
Treatment $(\lambda_1)$	-879	03	-367	02	-406	21	-106	.15	-3711	.35*
	(1176)	(.08)	(1128)	(.09)	(327)	(.13)	(142)	(.23)	(6007)	(.18)
Cost Sharing $(\lambda_2)$	4077	07	4107	.03	-115	19	86	02	3777	.18
a: ())	(3748)	(.09)	(3740)	(.10)	(108)	(.16)	(152)	(.21)	(9544)	(.17)
Saturation $(\lambda_3)$	2723 (7925)	67	2(22	.35	(1175)	-1.60	-735	23	-21106	1.16
Control Moon	(1030)	(.34)	(7028)	(.03)	(11/5)	(1.02)	(1357)	(1.10)	(41807)	(1.21)
Treatment Effect (%)	2020	-2.0	_21.4	-2 5	-40.6	0.44	-100 5	4.80	04 _4497 3	0.00 20.0
Joint F-Test (p-value)	0.557	0.579	0.640	0.845	0 438	0.094	0 009	0.016	0.008	0.031
Treatment FDR a-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.932
Number Observations	6850	3531	6850	2535	6850	1105	6850	369	6858	602

## Table 11: Earnings Part 1 - Pooled (untrimmed)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are untrimmed. See Section 7.1 for notes on outcome construction. See Table 10 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(0)	(1)	(=)	(a)	(=)	(2)	(2)	(10)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			Individual	Log Individual	Self-	Log Self-	Individual	Log Individual	Taxes on	Log Taxes on
	Individual	Log Individual	Wage	Wage	Employment	Employment	Farming	Farming	Individual Wages	Individual Wages
	Earnings	Earnings	Earnings	Earnings	Profit	Profit	Profits	Profits	and Profits	and Profits
Panel A: Full Sample										
Treatment $(\lambda_1)$	85	.11	106	00	113*	.19	2	.08	25	.31*
	(171)	(.09)	(138)	(.11)	(58)	(.14)	(5)	(.13)	(29)	(.16)
Cost Sharing $(\lambda_2)$	-34	05	-98	04	-57	12	5	.19	-38	09
0 000 0 0000 0 8 (0.2)	(175)	(08)	(132)	(12)	(65)	(15)	(6)	(13)	(26)	(14)
Saturation ())	870	(.00)	1015	(.12)	406	.10)	71**	9.50***	210	01
Saturation (X3)	(1199)	10	-1015	(75)	(257)	(.80)	(26)	-2.50	(120)	(1.06)
	(1185)	(.48)	(980)	(.75)	(337)	(.80)	(30)	(.84)	(152)	(1.00)
Control Mean	2133	6.87	1488	7.31	394	6.23	21	4.32	139	5.64
Treatment Effect (%)	4.0	10.4	7.1	3	28.7	17.0	10.9	7.5	17.7	27.2
Joint F-Test (p-value)	.745	.148	.284	.723	.248	.544	.180	.005	.036	.138
Treatment FDR q-value	.568	.461	.563	.770	.365	.389	.568	.563	.563	.365
Number Observations	4072	3330	4074	1944	4077	1433	4078	640	4086	924
Den al Di Fannalaa										
Fanel D: Females	_									
Treatment $(\lambda_1)$	-0	.13	22	04	50	.23	-1	.19	-30	.02
	(141)	(.15)	(154)	(.16)	(49)	(.18)	(7)	(.21)	(26)	(.26)
Cost Sharing $(\lambda_2)$	182	.03	-23	08	40	19	-2	.11	27	.07
	(164)	(.14)	(153)	(.15)	(79)	(.26)	(7)	(.16)	(30)	(.24)
Saturation $(\lambda_3)$	-1110	-1.08	-607	.52	443	51	-87**	-2.26*	-344**	82
( )	(1022)	(.79)	(865)	(1.10)	(460)	(1.31)	(42)	(1.20)	(152)	(1.46)
Control Mean	1136	6.29	858	7.07	210	5.68	19	3.97	67	5.16
Trostmont Effoct (%)	0	12.7	2.6	3.0	23.0	20.8	6.5	17.1	44.0	2.0
Loint E Test (n mlus)	0.429	0.146	0.802	0.90	0.445	0.429	0.002	0.015	0.144	0.026
Joint F-Test (p-value)	1.000	0.140	0.803	0.820	0.445	0.432	0.092	0.013	0.144	0.920
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2099	1500	2099	770	2103	673	2096	343	2106	322
Panel C: Males										
Treatment $(\lambda_1)$	174	09	194	01	176	14	6	- 05	78	44**
freutinene (XI)	(306)	(10)	(225)	(13)	(120)	(10)	(10)	(25)	(64)	( 21)
$C_{rest}$ Sharring ())		(.10)	(200)	(.10)	(120)	(.15)	(10)	(.20)	101*	(.21)
Cost $\operatorname{Shar}\operatorname{ing}(\lambda_2)$	-244	11	-109	01	-130	00	(11)	.21	-101	10
	(280)	(.10)	(226)	(.14)	(113)	(.16)	(11)	(.20)	(57)	(.20)
Saturation $(\lambda_3)$	-715	61	-1344	97	523	.21	-57	-2.70**	-109	.18
	(1714)	(.59)	(1538)	(.95)	(518)	(.79)	(49)	(1.17)	(250)	(1.37)
Control Mean	3138	7.33	2131	7.47	582	6.69	22	4.82	210	5.86
Treatment Effect (%)	5.5	8.7	9.1	1.4	30.2	13.2	25.6	-5.5	37.2	36.3
Joint F-Test (p-value)	0.681	0.425	0.342	0.696	0.500	0.901	0.398	0.075	0.079	0.107
Treatment FDR q-value	.816	.816	.816	1.000	.723	.816	.816	1.000	.723	.723
Number Observations	1973	1830	1975	1174	1974	760	1982	297	1980	602
	1010	1000	1010		1011	100	1002	201	1000	002
Panel D: Older than 12										
Treatment $(\lambda_1)$	479**	.32**	296*	.27	201*	.40**	-1	03	103*	.54**
	(223)	(.14)	(172)	(.16)	(102)	(.17)	(8)	(.23)	(61)	(.24)
Cost Sharing $(\lambda_2)$	-257	10	-330**	26	-57	04	6	.05	-125**	42
8(3)	(223)	(.11)	(136)	(.17)	(109)	(.18)	(6)	(.18)	(56)	(.25)
Saturation ().)	81	19	400	22	(100)	1.10	88**	3 15***	116	53
Saturation (X3)	(1354)	( 00)	(1026)	(1.00)	(547)	(1.16)	(36)	(1.17)	(225)	(1.37)
Control Moon	(1334)	(.30)	1020)	(1.03)	(041)	(1.10)	(30)	(1.17)	(200)	(1.57)
Control Mean	1800	0.00	1249	7.08	398	0.14	19	4.20	121	0.09
Treatment Effect (%)	26.6	27.9	23.7	23.0	50.5	33.5	-4.0	-2.0	85.3	43.3
Joint F-Test (p-value)	0.147	0.127	0.040	0.209	0.166	0.110	0.117	0.060	0.015	0.174
Treatment FDR q-value	.134	.134	.143	.143	.143	.134	.341	.341	.143	.134
Number Observations	2040	1696	2043	904	2039	799	2035	351	2045	468
Panal F. 10 on Vounaon										
Fanel E: 12 of Tounger	252		0			1.2		10	0.5	20
Treatment $(\lambda_1)$	-252	09	0	10	-4	12	0	.19	-30	.28
	(278)	(.13)	(225)	(.16)	(76)	(.16)	(7)	(.22)	(34)	(.23)
Cost Sharing $(\lambda_2)$	157	.00	101	.15	-56	24	5	.33	37	.12
	(255)	(.12)	(216)	(.13)	(78)	(.21)	(11)	(.22)	(31)	(.16)
Saturation $(\lambda_3)$	-1737	-1.90**	-1257	39	481	-1.60*	-58	-1.64	-270	.41
(	(2035)	(.79)	(1669)	(.92)	(455)	(.94)	(59)	(1.24)	(199)	(1.52)
Control Mean	2433	7.07	1675	7.45	409	6.39	22	4.35	155	5.65
Treatment Effect (%)	-10.3	_0.0	1010	-16.9	-1.0	-13.0	28.6	17.3	-22.6	24.5
Loint F Test (n mb)	-10.5	-3.3	0.0	-10.5	-1.0	-13.0	20.0	0.091	-22.0	0.206
Joint r-rest (p-value)	0.748	0.128	0.829	0.040	0.404	0.211	0.394	0.021	0.000	0.300
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	1979	1592	1978	1017	1985	617	1990	282	1988	445

## Table 12: Earnings Part 1 - KLPS-4 (trimmed)

Notes: Analysis uses KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. See Section 7.1 for notes on outcome construction. See Table 10 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3) Individual	(4) Log Individual	(5) Self-	(6) Log Self-	(7) Individual	(8) Log Individual	(9) Taxes on	(10) Log Taxes on
	Individual Earnings	Log Individual Earnings	Wage Earnings	Wage Earnings	Employment Profit	Employment Profit	Farming Profits	Farming Profits	Individual Wages and Profits	Individual Wages and Profits
Panel A: Full Sample	. 01	. 0.	0.0	. 0.						
Treatment $(\lambda_1)$	83	.08	77	.11	-4	.15	-2	.08	0	20
( 1)	(83)	(.08)	(75)	(.10)	(36)	(.12)	(2)	(.15)	(3)	(.31)
Cost Sharing $(\lambda_2)$	-88	04	-128	09	35	.01	-0	41**	3	.79*
0.000 0.000 0.000 (0.02)	(91)	(.08)	(80)	(.10)	(30)	(.13)	(1)	(.18)	(2)	(.41)
Saturation $(\lambda_{a})$	-781*	- 28	-378	31	287	- 01	8	49	53**	2.72
	(446)	(49)	(479)	(53)	(249)	(1.04)	(11)	(1.04)	(26)	(1.84)
Control Moon	1165	6.67	884	6.82	243)	6.01	6	(1.04)	0	5.94
Treatment Effect (%)	7.1	7.4	87	10.1	1.8	14.1	30.3	4.33	17	22.4
Loint E Test (p. mluo)	051	1.4 502	0.7	746	-1.0	410	-30.3	1.0	1.7	-22.9
Treatment EDP a value	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1 000
Mathematical Control of the second se	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4525	2897	4520	2030	4534	898	4552	140	4541	285
Panel B: Females										
Treatment $(\lambda_1)$	47	.11	18	.17	25	.07	-1	.06	6	37
	(99)	(.12)	(87)	(.17)	(43)	(.21)	(3)	(.21)	(5)	(.65)
Cost Sharing $(\lambda_2)$	-199*	10	-163*	10	-11	09	-1	21	2	.04
	(100)	(.13)	(83)	(.18)	(34)	(.21)	(2)	(.22)	(5)	(.47)
Saturation $(\lambda_2)$	-761	27	-330	.70	-53	.10	1	30	125	8.33***
( 6)	(553)	(.65)	(448)	(.93)	(239)	(1.61)	(15)	(1.34)	(75)	(2.77)
Control Mean	682	6.13	505	6.37	121	5.42	8	4 91	7	4.86
Treatment Effect (%)	7.0	10.0	3.6	15.8	20.7	7.1	-15.9	5.4	80.8	-46.2
Joint E-Test (p-value)	0.027	0.645	0.119	0.768	0.834	0.969	0.690	0.793	0.273	0.015
Treatment EDP a value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2017	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2247	1215	2249	122	2245	402	2232	101	2249	121
Panel C: Males										
Treatment $(\lambda_1)$	112	.05	133	.06	-32	.20	-3	.19	-6	10
	(159)	(.12)	(140)	(.13)	(51)	(.15)	(3)	(.26)	(4)	(.45)
Cost Sharing $(\lambda_2)$	8	.01	-102	08	76*	.10	-0	73**	4	1.09*
0(1)	(144)	(.11)	(124)	(.11)	(44)	(.16)	(2)	(.34)	(4)	(.61)
Saturation $(\lambda_3)$	-787	29	-402	.10	558*	.03	13	2.29	-6	68
( 6)	(743)	(.65)	(733)	(.62)	(286)	(1.18)	(12)	(2.41)	(21)	(2.30)
Control Mean	1601	7.04	1227	7.08	284	6.47	5	5.11	11	5.48
Treatment Effect (%)	7.0	5.2	10.8	5.9	-11.4	18.5	-51.9	17.4	-49.8	-10.1
Joint F-Test (p-value)	0.303	0.849	0.520	0.927	0.020	0.208	0 322	0.174	0.487	0.203
Treatment FDR a-value	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2278	1682	2277	1308	2201	136	2320	30	2202	164
Williber Observations	2210	1002	2211	1300	2231	430	2020		2232	104
Panel D: Older than 12										
Treatment $(\lambda_1)$	136	.07	89	.12	-19	.21	-6***	05	1	99*
	(123)	(.11)	(117)	(.15)	(52)	(.17)	(2)	(.19)	(3)	(.55)
Cost Sharing $(\lambda_2)$	27	.05	-28	04	81**	.02	3*	31	6	1.19**
	(124)	(.10)	(108)	(.14)	(39)	(.19)	(1)	(.20)	(5)	(.47)
Saturation $(\lambda_3)$	-351	.04	-571	.06	482	.86	0	-1.11	11	49
	(604)	(.44)	(553)	(.60)	(296)	(1.31)	(11)	(1.28)	(17)	(2.34)
Control Mean	1257	6.68	903	6.84	288	6.12	9	5	8	5.7
Treatment Effect (%)	10.8	7.1	9.9	11.6	-6.7	18.7	-71.2	-5.2	8.7	-466.9
Joint F-Test (p-value)	0.128	0.437	0.313	0.816	0.055	0.513	0.024	0.157	0.346	0.073
Treatment FDR q-value	.376	.519	.519	.519	.651	.318	.094	.651	.651	.236
Number Observations	2255	1553	2254	1027	2259	541	2265	85	2257	166
D 1 D 40 V			-			-				
Panel E: 12 or Younger							2	10		10
Treatment $(\lambda_1)$	29	.06	60	.06	6	.06	2	.19	-1	.48
a (a) (b)	(103)	(.10)	(93)	(.09)	(45)	(.21)	(2)	(.30)	(4)	(.42)
Cost Sharing $(\lambda_2)$	-189*	11	-209**	13	-7	02	-3	43	1	.48
	(105)	(.10)	(90)	(.11)	(43)	(.22)	(2)	(.33)	(3)	(.74)
Saturation $(\lambda_3)$	-1203	68	-164	.56	33	-1.23	14	1.83	90*	6.40**
	(724)	(.87)	(678)	(.60)	(259)	(1.55)	(16)	(1.22)	(51)	(2.55)
Control Mean	1082	6.66	867	6.8	134	5.87	4	4.97	10	4.87
Treatment Effect (%)	2.7	6.2	6.9	6.2	4.8	6.0	37.0	17.8	-5.8	39.1
Joint F-Test (p-value)	0.060	0.377	0.142	0.576	0.999	0.800	0.553	0.235	0.043	0.005
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2270	1344	2272	1003	2275	357	2287	55	2284	119

## Table 13: Earnings Part 1 - KLPS-3 (trimmed)

Notes: Analysis uses KLPS-3 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. See Section 7.1 for notes on outcome construction. See Table 10 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(-)	(=)	(	( .)	(=)	(-)	(=)	(-)	(=)	()
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			Individual	Log Individual	Self-	Log Self-	Individual	Log Individual	Taxes on	Log Taxes on
	Individual	Log Individual	Wage	Wage	Employment	Employment	Farming	Farming	Individual Wages	Individual Wages
	Earnings	Earnings	Earnings	Earnings	Profit	Profit	Profits	Profits	and Profits	and Profits
Panel A: Full Sample										
Treatment $(\lambda_1)$	136*	.10*	116*	.07	42*	.15*	-1	03	1	.18
(1)	(77)	(06)	(67)	(07)	(24)	(09)	(2)	(10)	(8)	(12)
Cost Sharing ().)	71	(.00)	71	06	17	08	2	15	8	14
Cost Sharing $(\lambda_2)$	(76)	(.06)	(64)	(.07)	(26)	(.00)	(2)	(11)	-0	(11)
	(70)	(.00)	(04)	(.07)	(20)	(.09)	(2)	(.11)	(0)	(.11)
Saturation $(\lambda_3)$	130	.19	140	.38	252*	60.	-19	-1.50***	-70*	.79
	(375)	(.24)	(380)	(.31)	(135)	(.51)	(13)	(.64)	(38)	(.65)
Control Mean	1219	6.74	887	6.98	212	6.09	11	4.49	51	5.49
Treatment Effect (%)	11.2	9.9	13.1	6.5	19.6	13.9	-8.6	-3.2	2.5	16.8
Joint F-Test (p-value)	.367	.334	.361	.629	.154	.256	.553	.052	.088	.058
Treatment FDR q-value	.361	.361	.361	.424	.361	.361	.543	.554	.625	.361
Number Observations	15145	8817	15151	5754	15152	3132	15220	963	15174	1577
Panel B: Females										
Treatment $(\lambda_1)$	81	.15	58	.12	37	.14	-3	.02	-2	.22
	(74)	(.10)	(78)	(.11)	(24)	(.15)	(3)	(.16)	(8)	(.24)
Cost Sharing $(\lambda_2)$	-55	07	-81	09	-0	15	-0	.13	4	03
- ( )	(80)	(.11)	(76)	(.11)	(24)	(.16)	(3)	(.14)	(9)	(.23)
Saturation $(\lambda_{a})$	-113	- 01	46	85	227	49	-26*	-1 62**	-35	1 30
Saturation (N3)	(425)	(46)	(420)	(60)	(186)	( 20)	(15)	(76)	(46)	(1.21)
C + 1M	(433)	(.40)	(430)	(.00)	(180)	(.09)	(13)	(.70)	(40)	(1.31)
Control Mean	674	6.19	501	0.01	124	5.57	11	4.24	20	4.90
Treatment Effect (%)	12.1	14.3	11.5	11.3	29.9	13.4	-22.6	1.9	-7.0	20.0
Joint F-Test (p-value)	0.506	0.332	0.753	0.539	0.301	0.637	0.170	0.087	0.888	0.634
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	7540	3628	7541	2034	7538	1488	7523	540	7532	581
P. I.C. M.I.										
Panel C: Males	101	07			10					
Treatment $(\lambda_1)$	191	.07	175	.03	40	.15	1	09	4	.16
	(130)	(.06)	(106)	(.07)	(45)	(.11)	(3)	(.19)	(13)	(.15)
Cost Sharing $(\lambda_2)$	-90	06	-64	04	-32	02	3	.18	-17	.25
	(107)	(.06)	(97)	(.08)	(44)	(.11)	(4)	(.17)	(12)	(.16)
Saturation $(\lambda_3)$	351	.31	234	.15	274	.78	-13	-1.52	-99	.64
( )	(590)	(.34)	(689)	(.39)	(190)	(.63)	(18)	(.94)	(67)	(.94)
Control Mean	1751	7.15	1265	7.21	208	6.55	10	4.86	75	5 79
Treatment Effect (%)	10.0	6.6	1200	2.0	15.5	14.0	6.4	10.0	57	15.1
Treatment Effect (76)	10.9	0.0	13.8	0.2	15.5	14.0	0.4	-10.0	5.7	10.1
Joint F-lest (p-value)	0.544	0.647	0.393	0.946	0.500	0.297	0.696	0.395	0.095	0.203
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	7605	5189	7610	3720	7614	1644	7697	423	7642	996
Panel D: Older than 19										
Treatment ()	954***	00***	956***	00**	εø	20*	2	-01	19	91
Treatment $(\lambda_1)$	(100)	.22	200	.22	(00)	.20	-3	21	10	.21
a (a) () ()	(108)	(.08)	(89)	(.09)	(38)	(.11)	(3)	(.17)	(11)	(.21)
Cost Sharing $(\lambda_2)$	-102	05	-97	13	-14	01	1	.06	-26***	.11
	(95)	(.07)	(72)	(.11)	(38)	(.10)	(2)	(.17)	(10)	(.22)
Saturation $(\lambda_3)$	$1206^{*}$	.83*	857	.79	288	$1.07^{*}$	-25*	-2.46**	-43	.81
	(716)	(.45)	(659)	(.53)	(181)	(.62)	(15)	(.97)	(52)	(.89)
Control Mean	1167	6.64	829	6.89	248	6.08	11	4.48	47	5.48
Treatment Effect (%)	30.3	19.6	30.9	20.3	23.5	17.8	-26.8	-24.2	38.7	18.8
Ioint E-Test (p-value)	0.011	0.023	0.044	0.093	0.157	0.101	0.272	0.085	0.059	0.302
Trootmont FDR a value	034	034	034	0.050	160	196	202	202	160	916
Number Observations	7590	4709	7505	.000	.100	1064	.202	.202	.100	.210
Number Observations	7580	4785	1989	2942	1982	1804	7024	328	7980	870
Panel E: 12 or Younger										
Treatment $(\lambda_1)$	-52	02	12	04	14	.03	1	.15	-11	.29
	(107)	(.08)	(96)	(.08)	(31)	(.13)	(3)	(.17)	(11)	(.19)
Cost Sharing (A.)	-54	- 07	-58	- 00	-16	- 18	2		8	15
cost bilaring (72)	(105)	( 08)	(00)	( 08)	(21)	(15)	(2)	(17)	(10)	(19)
Outron () )	(103)	(.08)	(99)	(.08)	(31)	(61.)	(0)	(.17)	(10)	(.10)
Saturation $(\lambda_3)$	-839	60	-450	.10	198	03	-12	08	- (4	1.28
	(656)	(.43)	(651)	(.37)	(187)	(.89)	(20)	(.99)	(52)	(1.05)
Control Mean	1253	6.84	921	7.04	183	6.15	10	4.48	54	5.47
Treatment Effect (%)	-4.2	-1.6	1.3	-4.2	7.7	2.9	10.9	14.3	-20.2	25.2
Joint F-Test (p-value)	0.561	0.446	0.784	0.806	0.740	0.623	0.674	0.088	0.503	0.049
Treatment FDR a-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	7512	3992	7513	2789	7517	1251	7543	428	7535	696
		0001	.010	2100		1201	1010		.000	000

Table 14: Earnings Part 1 - Pooled (trimmed, including SCY and VocEd)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. Analysis includes KLPS respondents who participated in SCV or VocEd, with indicators for receiving a SCY grant or a vocational training voncher. See Section 7.1 for notes on outcome construction. See Table 10 for notes on on the regression specification. Observations are weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)
	(1)	(2)	(J) Individual	(4) Log Individual	(J) Solf	Log Solf	(7) Individual	(o) Log Individual	(9) Taxos on	Log Taxos on
	Individual	Log Individual	Wage	Wago	Employment	Employment	Farming	Farming	Individual Wages	Individual Wages
	Earnings	Earnings	Earnings	Earnings	Profit	Profit	Profits	Profits	and Profits	and Profits
Panel A · Full Sample	Darmingo	Daringo	Lannago	Daringo	110110	110110	1101100	1 101140	und Fronto	und i ronto
Treatment $(\lambda_1)$	18**	.09	7	.07	3	.08	0	.25*	1	.16
(1)	(9)	(07)	(5)	(07)	(2)	(08)	(0)	(14)	(1)	(14)
Cost Sharing $(\lambda_2)$	-14	09	-6	06	-0	06	-0	38**	-1	.06
0000 bildring (7(2)	(9)	(.07)	(5)	(.08)	(2)	(.09)	(0)	(.15)	(1)	(.14)
Saturation $(\lambda_2)$	2	.01	-12	.62*	15	26	0	07	-3	.57
	(39)	(.31)	(35)	(.33)	(19)	(.45)	(0)	(.85)	(3)	(.93)
Control Mean	99	4.57	70	4 91	25	4 07	0	2.33	5	3 23
Treatment Effect (%)	18.4	8.3	9.6	7.0	10.5	8.2	21.1	22.00	20 7	15.2
Joint F-Test (p-value)	119	487	347	312	679	573	393	074	251	432
Treatment FDB g-value	000	000	000	000	000	000	000	000	000	000
Number Observations	12881	6326	13625	4036	12893	2624	13711	268	13659	1390
	12001	0020	10020	4000	12000	2024	10/11	200	10005	1000
Panel B: Females	_						_			
Treatment $(\lambda_1)$	6	.07	1	.06	1	.03	0	.23	-1	05
a . a	(8)	(.11)	(5)	(.10)	(3)	(.12)	(0)	(.17)	(1)	(.25)
Cost Sharing $(\lambda_2)$	-1	06	-4	08	3	05	-0	20	1	.03
	(8)	(.12)	(5)	(.10)	(3)	(.16)	(0)	(.16)	(1)	(.23)
Saturation $(\lambda_3)$	-29	23	8	1.33**	4	65	0	58	-5	2.05**
	(45)	(.47)	(27)	(.52)	(21)	(.72)	(1)	(1.23)	(5)	(1.01)
Control Mean	53	4.12	39	4.76	15	3.63	0	2.2	2	2.87
Treatment Effect (%)	11.0	7.2	3.0	5.5	8.6	3.0	29.2	20.9	-23.5	-5.1
Joint F-Test (p-value)	0.305	0.679	0.831	0.063	0.644	0.792	0.911	0.424	0.551	0.185
Treatment FDR q-value	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Number Observations	6378	2472	6830	1274	6375	1267	6813	192	6820	514
Panel C: Males										
Treatment $(\lambda_1)$	30	.10	12	.08	4	.13	0	.36	2	.28*
	(19)	(.09)	(9)	(.09)	(5)	(.10)	(0)	(.22)	(2)	(.15)
Cost Sharing $(\lambda_2)$	-26	- 10	-7	- 05	-3	- 07	-0	- 79**	-3*	09
0.000 0.000 0.000 (0.02)	(17)	(.08)	(9)	(.10)	(4)	(.10)	(0)	(.32)	(2)	(.18)
Saturation $(\lambda_3)$	28	.13	-27	.34	23	.00	1	1.23	-1	00
	(73)	(.38)	(58)	(.40)	(26)	(.54)	(0)	(1.54)	(7)	(1.33)
Control Mean	141	4.86	100	4.99	34	4.44	0	2.58	7	3.42
Treatment Effect (%)	21.5	9.1	12.2	7.3	11.8	12.0	8.9	30.6	37.7	24.9
Joint F-Test (p-value)	0.206	0.572	0.287	0.782	0.796	0.604	0.197	0.109	0.131	0.082
Treatment FDR q-value	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Number Observations	6503	3854	6795	2762	6518	1357	6898	76	6839	876
D I D Oll II (2										
Panel D: Older than 12	12.00	22444	1.04	2214						12
Treatment $(\lambda_1)$	41**	.22****	13*	.22***	6	.17*	-0*	15	3*	.12
	(16)	(.07)	(7)	(.11)	(4)	(.09)	(0)	(.20)	(2)	(.22)
Cost Sharing $(\lambda_2)$	-30**	08	-9	09	1	.06	0	02	-4**	07
<b>a</b>	(15)	(.07)	(6)	(.11)	(4)	(.10)	(0)	(.21)	(2)	(.22)
Saturation $(\lambda_3)$	107	.51	1	.63	37	.50	0	-2.36*	-0	.21
G + 114	(68)	(.49)	(41)	(.54)	(30)	(.72)	(0)	(1.32)	(7)	(1.21)
Control Mean	102	4.46	69	4.76	28	4.04	0	2.37	4	3.29
Treatment Effect (%)	40.4	20.1	18.5	19.9	21.3	15.6	-36.0	-15.8	84.5	11.3
Joint F-Test (p-value)	0.091	0.019	0.202	0.140	0.292	0.132	0.179	0.306	0.042	0.958
Treatment FDR q-value	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Number Observations	6445	3566	6800	2125	6439	1572	6839	160	6807	774
Panel E: 12 or Younger										
Treatment $(\lambda_1)$	-0	07	3	05	-2	09	0*	.66***	-1	.35**
	(10)	(.09)	(7)	(.08)	(4)	(.12)	(0)	(.24)	(1)	(.16)
Cost Sharing $(\lambda_2)$	-1	10	-3	03	-1	18	-0**	65**	1*	.18
	(10)	(.09)	(7)	(.09)	(3)	(.13)	(0)	(.26)	(1)	(.14)
Saturation $(\lambda_3)$	-91	71	-11	.90 ^{**}	-12	-1.57*	1	1.93*	-3	1.54
	(61)	(.63)	(53)	(.40)	(18)	(.82)	(1)	(1.13)	(5)	(1.06)
Control Mean	96	4.71	71	5.05	23	4.15	0	2.27	5	3.16
Treatment Effect (%)	3	-7.1	4.9	-4.9	-7.8	-8.9	110.2	50.9	-21.4	30.2
Joint F-Test (p-value)	0.486	0.344	0.941	0.061	0.811	0.081	0.159	0.013	0.286	0.016
Treatment FDR q-value	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Number Observations	6401	2735	6772	1892	6419	1036	6819	107	6799	605

### Table 15: Earnings Part 1 - Pooled (trimmed, last month)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 30 days from the interview date. Results are trimmed at the top 1% of observations. Results See Section 7.1 for notes on outcome construction. See Table 10 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

Table 16: Earnings Part 2 - Pooled (trin	$\operatorname{imed}$
------------------------------------------	-----------------------

	(1)	(0)	(9)	(4)	(7)	(C)	(7)	(0)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Individual	Log Individual	Hourly	Log Individual	Hourly	Log Hourly	Hourly	Log Hourly
	Hourly	Hourly	Individual	Wage	Self-Employment	Self-Employment	Individual	Individual
	Earnings	Earnings	Wage Earnings	Earnings	Profit	Profit	Farming Profits	Farming Profits
Panel A: Full Sample								
Treatment $(\lambda_1)$	.14*	.09*	.07	.07	.14*	.12	.05	.23
	(.08)	(.05)	(.11)	(.07)	(.08)	(.10)	(.05)	(.18)
Cost Sharing $(\lambda_{\alpha})$	- 22***	- 08	- 19*	- 10	- 14*	02	- 13***	- 42**
Cost Sharing (12)	(07)	(06)	(11)	(08)	(08)	(10)	(05)	(20)
Cotomotion ())	(.07)	(.00)	(.11)	(.06)	(.00)	(.10)	(.05)	(.20)
Saturation $(\lambda_3)$	.00	08	.40	.30	28	00	.31	1.03
	(.36)	(.29)	(.49)	(.39)	(.50)	(.56)	(.29)	(1.01)
Control Mean	1.07	74	1.26	45	.73	-1.26	.25	-2.01
Treatment Effect (%)	12.7	8.7	5.2	7.1	19.3	11.2	19.5	20.4
Joint F-Test (p-value)	.021	.352	.310	.588	.110	.202	.039	.058
Treatment FDR q-value	.609	.609	.763	.609	.609	.609	.609	.609
Number Observations	6096	5887	3745	3584	2242	2168	305	282
			0.100					
Panel B: Females								
Treatment $(\lambda_1)$	.01	.11	.02	.19	.07	.17	.02	.13
	(.11)	(.12)	(.15)	(.13)	(.11)	(.16)	(.07)	(.20)
Cost Sharing $(\lambda_2)$	09	07	16	19*	07	06	04	23
0 ( -)	(.09)	(.11)	(.12)	(.11)	(.09)	(.17)	(.06)	(.24)
Saturation $(\lambda_2)$	- 32	- 28	- 14	83	- 36	- 85	21	56
Saturation (X3)	( 56 )	( 54)	( 02)	(70)	( 62)	( 22)	(28)	(1.20)
	(.30)	(.04)	(.95)	(.70)	(.03)	(.03)	(.30)	(1.30)
Control Mean	.(2	-1.23	.9	83	.54	-1.71	.23	-2.13
Treatment Effect (%)	1.9	10.1	2.2	17.4	13.7	16.0	7.0	11.9
Joint F-Test (p-value)	0.271	0.491	0.447	0.286	0.677	0.404	0.835	0.761
Treatment FDR q-value	e 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2359	2252	1185	1099	1045	1012	220	207
Den el C. Meler								
Panel C: Males	00	00	00	01	20	00	10	50
Treatment $(\lambda_1)$	.22	.08	.09	.01	.20	.06	.12	.58
	(.15)	(.08)	(.18)	(.10)	(.15)	(.13)	(.10)	(.44)
Cost Sharing $(\lambda_2)$	30**	08	21	06	21	.09	30***	81**
	(.13)	(.09)	(.16)	(.10)	(.15)	(.13)	(.09)	(.37)
Saturation $(\lambda_3)$	.30	.02	.74	.13	22	51	.41	3.87**
( 0)	(.66)	(.46)	(.83)	(.49)	(.88)	(.87)	(.48)	(1.74)
Control Mean	13	- 43	1.45	- 26	88	_ 01	20	-1.64
Treatment Effect (%)	16.8	40	6.5	20	22.0	51	.23	45.0
Treatment Effect (76)	10.8	1.0	0.5	1.2	22.9	0.1	41.1	40.9
Joint F-Test (p-value)	0.054	0.691	0.503	0.927	0.399	0.515	0.007	0.014
Treatment FDR q-value	e 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	3737	3635	2560	2485	1197	1156	85	75
Panel D: Older than 19	•							
Treatment ().)	20*	9/***	26	20**	05**	20**	05	02
Treatment $(\lambda_1)$	.32	.24	.20	.30	.20	.23	.00	.02
	(.16)	(.07)	(.25)	(.12)	(.11)	(.11)	(.08)	(.31)
Cost Sharing $(\lambda_2)$	36**	14*	39*	24*	16	.02	11	34
	(.14)	(.07)	(.21)	(.13)	(.10)	(.12)	(.08)	(.33)
Saturation $(\lambda_3)$	.84	.48	1.45	.59	.01	.47	.33	01
	(.66)	(.39)	(1.00)	(.62)	(.51)	(.63)	(.44)	(1.51)
Control Mean	1.01	81	1.21	56	.64	-1.28	.25	-1.97
Treatment Effect (%)	31.4	21.9	23.5	25.9	38.8	25.4	18.7	1.8
Ioint F-Test (p-value)	0.042	0.010	0.261	0.105	0.119	0.039	0.534	0.587
Treatment FDP a value	0.012	0.028	152	071	071	071	260	466
Number Observetions	2416	.020	1067	1001	.071	.071	.200	.400
Number Observations	5410	5506	1907	1691	1379	1552	107	170
Panel E: 12 or Younger	r							
Treatment $(\lambda_1)$	05	08	12	11	.00	14	.04	.55
( 1)	(.10)	(.08)	(.14)	(.09)	(.17)	(.14)	(.08)	(.33)
Cost Sharing (1a)	- 06	_ 01	_ 01	09	_ 14	_ 00	_ 15*	_ 39
COSt Ditaring (A2)	00	01	01	.02	14	00	( 00)	32
	(.09)	(.09)	(.12)	(.11)	(.10)	(.10)	(.09)	(.34)
Saturation $(\lambda_3)$	82~	79	29	.47	69	-1.99*	.16	3.33***
	(.48)	(.51)	(.62)	(.46)	(1.11)	(1.11)	(.42)	(1.64)
Control Mean	1.13	65	1.3	35	.84	-1.18	.24	-2.06
Treatment Effect (%)	-4.7	-8.6	-9.3	-11.5	.6	-15.6	16.6	43.7
Joint F-Test (p-value)	0.270	0.409	0.745	0.211	0.483	0.308	0.217	0.043
Treatment FDR g-value	e 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2646	2545	1760	1675	849	822	116	104

Number Observations2b462b4517601675849822116104Notes:Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus12 months prior).Results are trimmed at the top 1% of observations. See Section 7.2 for notes on outcome construction. Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and2, which received an additional 2.4 years of deworming on average compared to Group 3. Reported estimates for Female and Male are constructed from a single regression, including an indicator for those olderthan 12 at baseline and analogous interaction terms. Reported estimates for Older than 12 and 12 or Younger also report results using a single regression, including an indicator for those olderupuls within 6 km, and a cost-sharing school indicator.These treated in a separate vocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-4 sample.PSDP population, and include KLPS population weights, SCY and VocEd control group weights, and KLPS intensive tracking weights.Standard errors are elustered at the 1998 school level. The Joint Sec.PT-Test (ry-alue) gives the p-value associated with an F-test on the joint significance of the tracting, and saturation coefficients against the null hypes school terms to rande the results using a single regression weights.Standard errors are clustered at the 1998 school level. The Joint Sec.PT-Test (ry-alue) gives the p-value associated with an F-test on the joint significance of the treatment, cost-sharing, and saturation coefficients against the null hypothesis that all three coefficients against the null hypothesis that all thr

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Individual	Log Individual	Hourly	Log Individual	Hourly	Log Hourly	Hourly	Log Hourly
	Hourly	Hourly	Individual Waga Farninga	Wage	Self-Employment Profit	Self-Employment Profit	Individual Forming Profits	Individual Forming Profits
Panel A: Full Sample	Lamings	Larinings	wage Larnings	Lainings	1 10110	110110	Farming 1 tonts	Farming 1 tonts
Treatment $(\lambda_1)$	-1.07	.04	-1.76	.15*	52	03	.22**	.30
	(1.15)	(.07)	(1.82)	(.09)	(.75)	(.13)	(.11)	(.33)
Cost Sharing $(\lambda_2)$	29	04	04	12	53	.11	25***	08
	(1.35)	(.08)	(2.17)	(.09)	(.38)	(.17)	(.07)	(.26)
Saturation $(\lambda_3)$	.37 (6.36)	27	-2.10 (10.65)	.70	4.07	-2.42	(35)	2.55
Control Mean	3.4	81	4.21	68	1.89	-1.23	.25	-1.7
Treatment Effect (%)	-31.5	3.5	-42.0	14.2	-27.7	-2.8	90.6	26.1
Joint F-Test (p-value)	.769	.833	.777	.307	.474	.136	.007	.245
Treatment FDR q-value	1.000	1.000	1.000	.933	1.000	1.000	.933	1.000
Number Observations	6170	3267	3790	2152	2272	1036	308	127
Panel B: Females								
Treatment $(\lambda_1)$	.74	.14	.24	.52***	.44	14	.13	.04
$(1 \rightarrow 0)$	(.77)	(.13)	(1.05)	(.17)	(.47)	(.22)	(.09)	(.32)
Cost Snaring $(\lambda_2)$	19	13	20	3(**	41	.01	08	.38
Saturation $(\lambda_2)$	(.53)	- 09	-2.80	1.23	7.31	-1.88	58	2.19
Saturation (7(3)	(6.37)	(.62)	(9.30)	(.75)	(7.59)	(1.13)	(.45)	(1.90)
Control Mean	.79	-1.32	.95	-1.24	.61	-1.53	.23	-1.79
Treatment Effect (%)	94.3	13.1	24.7	41.8	71.5	-15.4	56.0	3.5
Joint F-Test (p-value)	0.818	0.680	0.969	0.015	0.780	0.378	0.284	0.278
Treatment FDR q-value	1.000	1.000	1.000	.071	1.000	1.000	1.000	1.000
Number Observations	2370	1158	1193	596	1048	487	220	94
Panel C: Males								
Treatment $(\lambda_1)$	-2.25	03	-2.78	03	-1.27	.07	.37**	.52
Cost Chaming ()	(2.14)	(.09)	(2.93)	(.10)	(1.54)	(.20)	(.18)	(.63)
Cost Sharing $(\lambda_2)$	(2.08)	(09)	(3.17)	( 09)	58	(20)	01	-1.14
Saturation $(\lambda_3)$	60	42	-2.16	.29	2.94	-2.76	92	1.13
	(9.10)	(.69)	(14.16)	(.61)	(5.70)	(1.73)	(.88)	(2.41)
Control Mean	5.06	52	5.9	42	2.88	99	.29	-1.28
Treatment Effect (%)	-44.5	-3.5	-47.1	-3.1	-44.1	6.5	127.9	41.9
Joint F-Test (p-value)	0.653	0.942	0.773	0.895	0.371	0.270	0.002	0.209
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	3800	2109	2097	1990	1224	549	66	33
Panel D: Older than 12		10		20**		10	20	01*
Treatment $(\lambda_1)$	.11	.12	77	.29**	.65	.10	.26	.91*
Cost Sharing $(\lambda_{\alpha})$	(1.89)	(.09)	(3.19)	(.12)	(.44)	(.17)	- 28**	(.47)
Cost Sharing (12)	(2.39)	(.11)	(4.10)	(.12)	(.48)	(.23)	(.14)	(.44)
Saturation $(\lambda_3)$	-7.80	.05	-20.04	.75	5.35	90	.51	1.48
	(11.06)	(.57)	(19.15)	(.81)	(6.59)	(.88)	(.49)	(1.92)
Control Mean	2.32	78	3.15	67	.9	-1.13	.25	-1.89
Treatment Effect (%)	4.8	11.6	-24.4	25.7	72.7	9.7	105.5	64.6
Joint F-lest (p-value)	0.793	0.532	0.529	0.114	0.493	0.566	0.186	0.241
Number Observations	3454	1946	1992	1218	1394	682	189	.214 82
Den el E. 10 en Vermere		1010	1002	1210	1001	002	100	
Treatment (),	_9.30	- 06	-2.88	00	-1.88	- 20	10**	- 48
Treatment $(\lambda_1)$	(2.01)	(.11)	(3.00)	(.11)	(1.73)	(.25)	(.09)	(.46)
Cost Sharing $(\lambda_2)$	35	00	.19	05	26	.20	23**	.30
0(-)	(.71)	(.12)	(1.19)	(.13)	(.42)	(.24)	(.11)	(.47)
Saturation $(\lambda_3)$	9.71	62	18.05	.81	2.36	-4.30**	07	3.47**
	(8.57)	(.79)	(13.88)	(.62)	(4.95)	(1.76)	(.67)	(1.51)
Control Mean	4.64	85	5.37	68	3.08	-1.35	.24	-1.41
Ireatment Effect (%)	-51.5 0.507	-0.3 0.857	-53.8 0 520	.0	-01.1	-22.5	78.6	-05.1
Treatment FDB <i>a</i> -value	1.000	1.000	1.000	1 000	1 000	1 000	932	1.000
Number Observations	2682	1321	1780	934	864	354	117	45

## Table 17: Earnings Part 2 - Pooled (untrimmed)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus twelve months prior). Results are untrimmed. See Section 7.2 for notes on outcome construction. See Table 16 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Individual	Log Individual	Hourly	Log Individual	Hourly	Log Hourly	Hourly	Log Hourly
	Hourly Earnings	Earnings	Undividual Wage Earnings	Wage Earnings	Self-Employment Profit	Self-Employment Profit	Farming Profits	Farming Profits
Panel A: Full Sample	Lariningo	Darmingo	Wage Larnings	Larnings	110110	110110	Tarining Trones	raming rionts
Treatment $(\lambda_1)$	.26*	.14*	.14	04	.26**	.24	.08	.42
	(.14)	(.08)	(.22)	(.12)	(.12)	(.16)	(.06)	(.28)
Cost Sharing $(\lambda_2)$	35***	12*	31	11	20*	04	15***	98***
	(.12)	(.07)	(.20)	(.11)	(.11)	(.16)	(.04)	(.21)
Saturation $(\lambda_3)$	.30	02	.(5	01	.51	.40	.09	43
Control Mean	1.28	- 6	1.66	- 09	(.38)	-1.24	2	-2.34
Treatment Effect (%)	20.7	13.3	8.5	-3.6	34.5	21.6	42.5	34.9
Joint F-Test (p-value)	.026	.270	.402	.477	.134	.462	.011	.000
Treatment FDR q-value	.365	.365	.563	.677	.365	.379	.389	.379
Number Observations	2718	2662	1501	1459	1168	1146	173	156
Panel B: Females								
Treatment $(\lambda_1)$	01	.09	04	13	.15	.46**	.04	.24
	(.17)	(.15)	(.26)	(.19)	(.13)	(.21)	(.09)	(.31)
Cost Sharing $(\lambda_2)$	01	07	11	09	.01	17	12**	79***
Cotunation ()	(.15)	(.14)	(.21)	(.16)	(.12)	(.21)	(.06)	(.28)
Saturation $(\lambda_3)$	75	(1	52	.29	04	(1.10)	.00	-1.22
Control Mean	78	-1.12	1.16	- 35	43	-1.84	17	-2.61
Treatment Effect (%)	-1.8	8.3	-3.4	-14.2	34.6	37.6	21.7	21.2
Joint F-Test (p-value)	0.613	0.375	0.781	0.598	0.570	0.170	0.219	0.053
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	1139	1102	536	508	538	527	124	113
Panel C: Males								
Treatment $(\lambda_1)$	.45*	.18	.24	.02	.35	.07	.21	1.08*
	(.26)	(.13)	(.35)	(.15)	(.22)	(.18)	(.13)	(.56)
Cost Sharing $(\lambda_2)$	58**	16	43	11	38*	.06	23**	-1.47***
$C_{\text{charaction}}(\lambda)$	(.23)	(.12)	(.30)	(.15)	(.21)	(.16)	(.10)	(.38)
Saturation $(\lambda_3)$	.84 (1.07)	.30	(1.40)	15	.90	.(5)	.20	2.39 (3.17)
Control Mean	1.63	24	1.97	.07	1.02	76	.26	-1.83
Treatment Effect (%)	27.3	16.4	12.1	1.6	34.5	6.4	79.9	73.1
Joint F-Test (p-value)	0.040	0.503	0.509	0.773	0.227	0.758	0.138	0.000
Treatment FDR q-value	.723	.723	.816	1.000	.723	1.000	.723	.723
Number Observations	1579	1560	965	951	630	619	49	43
Panel D: Older than 12								
Treatment $(\lambda_1)$	.51	.38***	.52	.29	.32*	.45**	.07	.05
	(.31)	(.13)	(.53)	(.22)	(.18)	(.22)	(.11)	(.43)
Cost Sharing $(\lambda_2)$	57**	22**	72	32	16	.01	19**	80*
Saturation $()$	(.25)	(.09)	(.44)	(.23)	(.17)	(.19)	(.09)	(.41)
Saturation $(\lambda_3)$	(1.19)	(.70)	(1.91)	(1.12)	(.97)	(1.05)	(.55)	(2.10)
Control Mean	1.16	8	1.58	32	.64	-1.34	.28	-2.08
Treatment Effect (%)	43.9	32.3	33.1	25.5	49.0	37.1	24.5	4.5
Joint F-Test (p-value)	0.072	0.025	0.334	0.352	0.342	0.100	0.098	0.067
Treatment FDR q-value	.143	.094	.193	.183	.143	.134	.284	.341
Number Observations	1414	1386	708	690	671	658	104	95
Panel E: 12 or Younger								
Treatment $(\lambda_1)$	.04	10	13	24	.22	03	.10	1.02**
	(.19)	(.12)	(.26)	(.15)	(.22)	(.16)	(.09)	(.42)
Cost Sharing $(\lambda_2)$	16	04	01	.09	31	19	09	90**
Saturation $(\lambda_{\alpha})$	74	93*	48	.36	1.07	38	.29	3.18
Savaration (73)	(.90)	(.51)	(1,16)	(.83)	(1.08)	(1.00)	(.51)	(2.21)
Control Mean	1.39	4	1.73	.08	.9	-1.03	.1	-2.72
Treatment Effect (%)	3.2	-10.5	-7.4	-27.5	24.4	-3.1	97.5	70.2
Joint F-Test (p-value)	0.542	0.231	0.932	0.256	0.335	0.783	0.408	0.011
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	.517
Number Observations	1270	1242	775	751	483	474	67	59

## Table 18: Earnings Part 2 - KLPS-4 (trimmed)

Notes: Analysis uses KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus twelve months prior). Results are trimmed at the top 1% of observations. See Section 7.2 for notes on outcome construction. See Table 16 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(0)	(9)	(4)	(F)	(C)	(7)	(0)
	(1) Individual	(2) Log Individual	(ə) Houmlu	(4) Log Individual	(0) Houmla	(0) Log Houmly	( <i>i</i> ) Houmhr	(0) Log Houmly
	Individual	Log maiviauai	Touriy	Log Individual	Colf From Lorent	Colf From losses	To dissi dasal	Log nouny
	Forning	Forning	Wago Farningo	Forminge	Drofit	Droft	Forming Profits	Forming Profits
Danal A. Full Camula	Earnings	Larnings	wage Larnings	Larnings	FIOIIU	FIOIIU	Farming Froms	Farming Froms
Treatment ().)	- 01	03	- 03	14	02	03	04	00
Treatment $(\lambda_1)$	01	.05	05	.14	.02	(15)	.04	.00
Cost Shaning ()	(.07)	(.09)	(.00)	(.11)	(.15)	(.15)	(.09)	(.27)
Cost Sharing $(\lambda_2)$	09	02	15	10	01	.10	00	.07
Seturnation ())	(.00)	(.07)	(.07)	(.10)	(.10)	(.17)	(.06)	(.20)
Saturation $(\lambda_3)$	50	12	.41	.00	-1.49	-2.00	.21	(1.92)
Control Moon	(.42)	(.57)	(.40)	(.05)	(1.39)	(1.55)	(.47)	(1.25)
Treatment Effect (07)	1	11	1.12	07	.11	-1.29	.29	-1.1
Leint E Test (n and had)	0	3.0	-2.3	10.2	5.1	0.1	12.5	 900
Joint F-Test (p-value)	.139	.451	.085	.495	.578	.208	.807	.388
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2316	2211	1484	1406	768	724	132	126
Panel B: Females								
Treatment $(\lambda_1)$	05	.09	.01	.46**	04	14	02	13
	(.12)	(.14)	(.15)	(.21)	(.22)	(.23)	(.11)	(.30)
Cost Sharing $(\lambda_2)$	17**	09	27**	39**	14	.02	.13	.41
	(.08)	(.12)	(.12)	(.18)	(.16)	(.22)	(.13)	(.33)
Saturation $(\lambda_3)$	21	36	.13	.99	31	-1.17	08	1.01
	(.54)	(.68)	(.69)	(.88)	(1.16)	(1.54)	(.71)	(1.63)
Control Mean	.75	-1.27	.78	-1.14	.75	-1.53	.28	-1.79
Treatment Effect (%)	-6.5	8.4	.7	37.6	-5.1	-14.9	-5.8	-13.8
Joint F-Test (p-value)	0.085	0.688	0.052	0.101	0.681	0.818	0.656	0.449
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	899	850	446	407	387	367	96	94
Den al C. Malas								
Treatment ()	02	0.9	04	0.2	00	02	01	04
Treatment $(\lambda_1)$	.02	02	04	05	.09	.20	.01	.04
$G_{1} \rightarrow G_{2}$	(.09)	(.11)	(.10)	(.12)	(.24)	(.23)	(.20)	(.03)
Cost Sharing $(\lambda_2)$	05	.03	08	03	.00	.08	3(***	02
	(.08)	(.09)	(.09)	(.11)	(.27)	(.25)	(.15)	(.49)
Saturation $(\lambda_3)$	41	95	.53	.10	-2.08	-3.31	.11	2.67
0 + 110	(.69)	(.83)	(.57)	(.67)	(2.05)	(2.19)	(.79)	(2.10)
Control Mean	1.17	40	1.28	3	.78	-1.08	.34	-1.28
Treatment Effect (%)	1.8	-1.0	-3.0	-2.9	11.8	20.5	2.9	3.5
Joint F-Test (p-value)	0.627	0.663	0.439	0.940	0.509	0.125	0.095	0.204
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	1417	1361	1038	999	381	357	36	32
Panel D: Older than 12								
Treatment $(\lambda_1)$	.22***	.16*	.12	.32**	.31*	.25	.21	.75*
	(.08)	(.09)	(.12)	(.15)	(.18)	(.18)	(.15)	(.39)
Cost Sharing $(\lambda_2)$	26***	09	26**	24*	18	05	07	46
	(.09)	(.10)	(.12)	(.14)	(.17)	(.22)	(.17)	(.42)
Saturation $(\lambda_3)$	.49	22	.84	.76	.07	88	.77	2.00
	(.45)	(.49)	(.76)	(.71)	(.98)	(1.28)	(.65)	(1.72)
Control Mean	.99	76	1.12	59	.71	-1.19	.23	-1.89
Treatment Effect (%)	21.9	14.7	10.8	27.5	44.5	22.4	93.4	56.1
Joint F-Test (p-value)	0.022	0.193	0.171	0.180	0.353	0.371	0.220	0.199
Treatment FDR q-value	.094	.236	.445	.231	.236	.277	.273	.236
Number Observations	1277	1227	770	735	467	440	83	81
Panel E: 12 or Younger		00	1.0*	00	00	20	0.0*	05**
Treatment $(\lambda_1)$	21**	09	16*	02	30	20	23*	95**
$C_{1} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{2$	(.11)	(.13)	(.09)	(.13)	(.32)	(.29)	(.11)	(.44)
Cost Sharing $(\lambda_2)$	.08	.06	02	08	.24	.29	18	.38
G ( ) )	(.09)	(.13)	(.09)	(.15)	(.28)	(.25)	(.21)	(.46)
Saturation $(\lambda_3)$	-1.11	-1.21	.23	.43	-2.93	-3.99*	39	2.38
<u> </u>	(.76)	(1.08)	(.58)	(.88)	(2.27)	(2.02)	(.56)	(1.50)
Control Mean	1.02	78	1.11	54	.85	-1.4	.39	-1.41
Treatment Effect (%)	-20.8	-9.6	-14.2	-2.3	-34.6	-22.7	-58.3	-307.4
Joint F-Test (p-value)	0.143	0.728	0.253	0.852	0.460	0.267	0.093	0.012
Treatment FDR q-value	.474	1.000	.575	1.000	1.000	1.000	.474	.474
Number Observations	1039	984	714	671	301	284	49	45

## Table 19: Earnings Part 2 - KLPS-3 (trimmed)

Notes: Analysis uses KLPS-3 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus twelve months prior). Results are trimmed at the top 1% of observations. See Section 7.2 for notes on outcome construction. See Table 16 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Individual	Log Individual	Hourly	Log Individual	Hourly	Log Hourly	Hourly	Log Hourly
	Hourly	Hourly	Individual	Wage	Self-Employment	Self-Employment	Individual	Individual
	Earnings	Earnings	Wage Earnings	Earnings	Profit	Profit	Farming Profits	Farming Profits
Panel A: Full Sample								
Treatment $(\lambda_1)$	.47**	.06	.04	.02	.17	.13	.19	.15
	(.19)	(.05)	(.08)	(.05)	(.11)	(.09)	(.14)	(.16)
Cost Sharing $(\lambda_2)$	72***	09*	10	09*	18*	03	40***	40**
a	(.20)	(.05)	(.08)	(.05)	(.10)	(.09)	(.12)	(.19)
Saturation $(\lambda_3)$	.23	19	.18	.13	17	41	14	11
	(.89)	(.24)	(.39)	(.28)	(.48)	(.48)	(.70)	(.87)
Control Mean	2.96	.1	1.33	23	.89	-1.1	.74	-1.03
Treatment Effect (%)	16.0	5.4	2.6	1.9	18.6	12.3	25.9	13.8
Joint F-lest (p-value)	.004	.089	.648	.287	.287	.246	.017	.191
Treatment FDR q-value	.301	.424	.543	.554	.301	.301	.301	.424
Number Observations	8082	7759	5276	5008	2827	2727	449	415
Panel B: Females								
Treatment $(\lambda_1)$	.11	.03	08	.00	01	.13	.16	.13
	(.26)	(.10)	(.11)	(.10)	(.13)	(.12)	(.20)	(.20)
Cost Sharing $(\lambda_2)$	36	09	09	08	05	10	29*	17
	(.25)	(.10)	(.10)	(.10)	(.10)	(.14)	(.16)	(.24)
Saturation $(\lambda_3)$	32	58	.14	.26	86	84	14	90
	(1.37)	(.50)	(.72)	(.52)	(.54)	(.61)	(.90)	(1.16)
Control Mean	2.01	28	1.03	51	.64	-1.51	.57	-1.32
Treatment Effect (%)	5.7	3.1	-8.1	.4	-1.5	12.4	27.7	12.3
Joint F-Test (p-value)	0.350	0.410	0.431	0.822	0.364	0.330	0.325	0.693
Treatment FDR q-value	. 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	3219	3054	1802	1662	1314	1270	312	294
Panel C: Males								
Treatment $(\lambda_1)$	.72**	.08	.10	.03	.31	.12	.25	.20
	(.31)	(.06)	(.12)	(.07)	(.19)	(.12)	(.30)	(.33)
Cost Sharing $(\lambda_2)$	96***	09*	11	09	28	.03	59**	74**
	(.28)	(.06)	(.10)	(.06)	(.18)	(.11)	(.26)	(.31)
Saturation $(\lambda_3)$	.63	.04	.23	.08	.32	08	33	1.38
	(1.23)	(.33)	(.46)	(.31)	(.90)	(.78)	(1.46)	(1.46)
Control Mean	3.6	.36	1.5	07	1.11	76	1.08	45
Treatment Effect (%)	20.1	7.3	6.9	2.6	28.4	11.7	22.9	18.3
Joint F-Test (p-value)	0.009	0.306	0.758	0.433	0.394	0.492	0.058	0.035
Treatment FDR q-value	.639	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4863	4705	3474	3346	1513	1457	137	121
Panel D: Older than 12								
Treatment $(\lambda_1)$	.77**	.16**	.15	.14*	.22	.24*	.17	00
	(.30)	(.07)	(.13)	(.08)	(.16)	(.13)	(.23)	(.28)
Cost Sharing $(\lambda_2)$	95***	15**	25**	17**	30**	12	31	35
	(.26)	(.06)	(.11)	(.08)	(.14)	(.10)	(.21)	(.29)
Saturation $(\lambda_3)$	2.18	.39	.86	.44	.62	.64	58	-1.52
	(1.49)	(.32)	(.60)	(.40)	(.67)	(.62)	(1.02)	(1.16)
Control Mean	2.64	01	1.33	29	.9	-1.11	.69	-1.08
Treatment Effect (%)	29.4	15.0	11.3	13.2	24.7	21.9	24.8	1
Joint F-Test (p-value)	0.006	0.079	0.122	0.205	0.162	0.231	0.256	0.092
Treatment FDR q-value	.052	.076	.202	.126	.202	.126	.260	.442
Number Observations	4422	4268	2712	2597	1719	1658	269	249
Panel E: 12 or Younger	•							
Treatment $(\lambda_1)$	.16	06	04	07	.10	06	.20	.34
	(.36)	(.08)	(.13)	(.08)	(.19)	(.12)	(.28)	(.30)
Cost Sharing $(\lambda_2)$	45	03	.04	00	04	.05	49**	35
	(.33)	(.07)	(.13)	(.08)	(.16)	(.14)	(.23)	(.28)
Saturation $(\lambda_3)$	-2.04	88**	21	.06	-1.13	-1.74**	.03	1.31
	(1.55)	(.39)	(.57)	(.38)	(.93)	(.86)	(1.17)	(1.19)
Control Mean	3.24	.21	1.32	19	.9	-1.03	.79	96
Treatment Effect (%)	4.8	-6.0	-3.3	-6.8	11.4	-6.0	25.3	28.9
Joint F-Test (p-value)	0.339	0.096	0.972	0.719	0.458	0.234	0.142	0.231
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	3626	3457	2546	2393	1094	1055	178	164

### Table 20: Earnings Part 2 - Pooled (trimmed, including SCY and VocEd)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voucher. See Section 7.2 for notes on outcome construction. See Table 16 for notes on the regression specification. Observations weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(0)	(1)	(=)	(a)	(=)	(0)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Individual	Log Individual	Hourly	Log Individual	Hourly	Log Hourly	Hourly	Log Hourly
	Hourly	Hourly	Individual	Wage	Self-Employment	Self-Employment	Individual	Individual
	Earnings	Earnings	Wage Earnings	Earnings	Profit	Profit	Farming Profits	Farming Profits
Panel A: Full Sample				· · · · ·				
Treatment $(\lambda_1)$	13	06	08	06	12	06	05	01
from (A)	(08)	(05)	(10)	(07)	(10)	(.08)	(07)	(28)
$C_{1} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{2$	01***	(.05)	(.10)	(.01)	(.10)	(.00)	(.07)	(.20)
Cost Sharing $(\lambda_2)$	21	07	18	09	19	02	00	10
	(.07)	(.05)	(.10)	(.07)	(.08)	(.09)	(.06)	(.24)
Saturation $(\lambda_3)$	.04	15	.44	.29	47	82*	.50	3.25**
	(.39)	(.32)	(.49)	(.34)	(.49)	(.45)	(.39)	(1.45)
Control Mean	1.12	51	1.28	22	.93	86	.21	-1.67
Treatment Effect (%)	11.3	5.8	6.3	5.6	12.9	57	23.3	9
loint E-Test (p-value)	020	437	350	635	084	161	484	077
Tractor and EDD a sub-	1.020	1.000	1.000	1.000	1.000	1.000	1,000	1.000
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	5721	5455	3744	3562	2236	2162	305	188
Panel B. Females								
Treatment $(\lambda_i)$	04	05	00	09	12	03	02	- 01
freatment (AI)	(11)	(10)	(14)	(11)	(11)	(19)	(00)	( 20)
	(.11)	(.10)	(.14)	(.11)	(.11)	(.12)	(.09)	(.20)
Cost Sharing $(\lambda_2)$	06	03	14	14	05	.01	01	.02
	(.09)	(.10)	(.11)	(.09)	(.09)	(.14)	(.08)	(.29)
Saturation $(\lambda_3)$	40	42	10	.55	14	-1.00	.42	$2.85^{*}$
	(.57)	(.51)	(.83)	(.54)	(.59)	(.61)	(.45)	(1.60)
Control Mean	.73	92	.98	46	.57	-1.24	.22	-1.78
Treatment Effect (%)	5.9	47	1	84	21.2	2.9	74	- 8
Loint E Tost (p. value)	0.224	0.628	0.510	0.478	0.560	0.227	0.826	0.220
Joint F-Test (p-value)	0.524	0.028	0.519	0.476	0.509	0.527	0.820	0.559
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2197	2053	1186	1092	1042	1011	219	139
Panel C: Males								
Treatment ().)	18	07	12	04	14	08	12	06
Treatment $(\lambda_1)$	(17)	.07	.15	.04	.14	.00	.10	.00
	(.15)	(.08)	(.16)	(.09)	(.19)	(.12)	(.12)	(.66.)
Cost Sharing $(\lambda_2)$	31**	10	20	07	30*	04	16	41
	(.13)	(.08)	(.14)	(.09)	(.15)	(.11)	(.12)	(.49)
Saturation $(\lambda_3)$	.31	00	.69	.17	68	69	.65	$4.01^{*}$
	(.68)	(.43)	(.78)	(.44)	(.79)	(.77)	(.64)	(2.06)
Control Mean	1.36	26	1.44	1	1.21	56	.19	-1.2
Treatment Effect (%)	13.6	6.6	8.0	4.0	11.9	8.0	70.5	5.8
Loint E Tost (p. value)	0.057	0.560	0.521	0.002	0.191	0.500	0.346	0.040
Joint F-Test (p-value)	1.000	0.500	0.331	0.902	0.121	0.009	0.540	1.000
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	3524	3402	2558	2470	1194	1151	86	49
Panel D: Older than 19								
Trootmont ().)	20*	19***	28	95**	17	16*	00	20
Treatment $(\lambda_1)$	.23	.10	(.20)	.20	.17	.10	.03	.23
a . a	(.10)	(.07)	(.22)	(.11)	(.13)	(.09)	(.11)	(.34)
Cost Sharing $(\lambda_2)$	36***	13**	35*	18*	17	01	03	26
	(.13)	(.06)	(.19)	(.10)	(.12)	(.10)	(.10)	(.32)
Saturation $(\lambda_3)$	.93	.28	1.27	.37	.37	.26	1.09*	$3.88^{*}$
	(.70)	(.41)	(.95)	(.52)	(.56)	(.56)	(.56)	(2.04)
Control Mean	1.08	57	1.21	35	.89	85	.22	-1.78
Treatment Effect (%)	26.8	16.8	23.3	22.3	19.4	14.9	40.0	25.3
Loint E Tost (p. value)	0.020	0.050	0.200	0.122	0.420	0.221	0.284	0.252
Tractor and EDD a sub-	159	0.005	0.500	0.100	0.420	159	0.204	0.200
Treatment FDR q-value	.153	.000	.214	.081	.214	.103	.204	.204
Number Observations	3246	3109	1968	1881	1372	1327	187	121
Panel E: 12 or Younger	•							
Treatment ().)	- 02	- 08	- 00	- 11	06	- 13	- 03	- 34
manual (A1)	(19)	(00)	(19)	( 00)	( 20)	(19)	(10)	( 20)
<b>O</b> ( <b>O</b> ) ( <b>D</b> )	(.12)	(.09)	(.12)	(.08)	(.20)	(.13)	(.10)	(.38)
Cost Sharing $(\lambda_2)$	06	01	02	.00	21	03	12	.08
	(.09)	(.08)	(.11)	(.09)	(.16)	(.14)	(.08)	(.36)
Saturation $(\lambda_3)$	88*	73	12	.51	-1.63	-2.34**	18	$2.95^{*}$
	(.50)	(.58)	(.62)	(.41)	(.99)	(1.01)	(.48)	(1.63)
Control Mean	1.16	43	1.34	11	.99	82	.2	-1.49
Treatment Effect (%)	-1.8	-8.3	-6.4	-11.2	5.8	-13.4	-12.8	-41.4
Loint E Toot (n mb)	0.200	0.624	0.990	0.195	0.116	0.199	0.441	0.120
Transforment FDD	1.000	0.024	1.000	0.130	0.110	0.100	0.441	0.129
Treatment FDK q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2453	2325	1758	1663	850	822	116	67

### Table 21: Earnings Part 2 - Pooled (trimmed, last month)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Each observation is for an individual in the last 30 days from the interview date. Results are trimmed at the top 1% of observations. Results See Section 7.2 for notes on outcome construction. See Table 16 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)
	Per-Capita	Log Per-Capita	Household	Log Household
	Household Earnings	Household Earnings	Tax Spending	Tax Spending
Panel A: Full Sample	iiousonoid Ediningo	Household Edithings	ran openanig	ran openning
Treatment ().)	930*	19	15	20
Treatment $(\lambda_1)$	(120)	.12	(26)	(15)
	(129)	(.11)	(20)	(.15)
Cost Snaring $(\lambda_2)$	-157	04	-28	10
	(120)	(.08)	(22)	(.13)
Saturation $(\lambda_3)$	-1011*	92**	-205*	65
	(604)	(.44)	(114)	(.87)
Control Mean	1296	6.2	79	5.21
Treatment Effect (%)	18.4	11.0	18.4	18.0
Joint F-Test (p-value)	.018	.075	.052	.199
Treatment FDR g-value	.380	.380	.569	.380
Number Observations	4074	3946	4803	1064
	1011	3010	1000	1001
Panel B: Females				
Treatment $(\lambda_1)$	36	01	-26	06
	(107)	(.12)	(22)	(.25)
Cost Sharing $(\lambda_2)$	63	.07	30	.00
- · · -/	(105)	(.12)	(25)	(.21)
Saturation $(\lambda_3)$	-1691***	-1.74**	-331**	-1.42
(	(621)	(.82)	(143)	(1.40)
Control Mean	073	5.00	40	4.85
Treatment Effect (07)	27	0.99	40	4.00
Freatment Effect (%)	3.7	8	-0.0	-0.7
Joint F-Test (p-value)	0.013	0.067	0.146	0.761
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	2099	2003	2478	390
Panel C: Males				
Treatment ().)	/30*	24	55	30*
Treatment $(\lambda_1)$	(050)	(16)	(55)	(18)
$C_{rest}$ Sheering ())	(202)	(.10)	(00)	(.10)
Cost Sharing $(\lambda_2)$	-373	10	-84	23
	(229)	(.13)	(51)	(.18)
Saturation $(\lambda_3)$	-484	28	-115	50
	(1075)	(.67)	(215)	(1.06)
Control Mean	1623	6.4	117	5.38
Treatment Effect (%)	27.1	21.2	46.9	26.6
Joint F-Test (p-value)	0.126	0.439	0.092	0.139
Treatment FDR q-value	.209	.209	.209	.209
Number Observations	1975	1943	2325	674
D 1 D 011 // /0				
Panel D: Older than 12				
Treatment $(\lambda_1)$	565**	.31**	92*	.59**
	(232)	(.15)	(53)	(.23)
Cost Sharing $(\lambda_2)$	-424*	26**	-109**	43*
	(219)	(.12)	(50)	(.23)
Saturation $(\lambda_3)$	865	18	-108	05
( */	(1022)	(.61)	(203)	(1.14)
Control Mean	1082	6	68	5.1
Treatment Effect (%)	50.0	26.0	134.9	46.4
Loint E Tost (n velve)	0.110	20.9	104.0	40.4
Joint r-rest (p-value)	0.119	0.100	0.025	0.004
Treatment FDR q-value	.037	.037	.047	.037
Number Observations	2039	1984	2394	545
Panel E: 12 or Younger				
Treatment $(\lambda_1)$	-99	- 04	-43	- 02
	(171)	(13)	(29)	(22)
Cost Sharing ()	15	14	(40)	10
Cost Sharing (A2)	(100)	.14 ( 19)	(95)	(10)
Cotometica (N)	(100)	(.12)	(20)	(.19)
Saturation $(\lambda_3)$	-2967**	-1.74**	-255	52
	(1138)	(.69)	(167)	(1.60)
Control Mean	1501	6.37	88	5.24
Treatment Effect (%)	-1.5	-3.7	-49.6	-2.4
Joint F-Test (p-value)	0.049	0.085	0.305	0.943
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	1982	1909	2356	506

#### Table 22: Household Earnings - Pooled (trimmed)

 Number Observations
 1982
 1909
 2356
 506

 Notes: Columns (1) and (2) use KLPS-4 data, and columns (3) and (4) use KLPS-3 and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months for the p1% of observations. See Section 8 for notes on outcome construction. Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming on average compared to Group 3. Reported estimates for Female and Male are constructed from a single regression including treatment-female, cost-sharing-female, and saturation-female interaction terms. Reported estimates for Older than 12 at 12 or Younger also report results using a single regression, including an indicator for those older than 12 at baseline and analogous population, geographic zone of the school, survey wave and month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average school test score on the 1996 Busia District mock exams, total primary school pupils within 6 fm, and a cost-sharing school indicator. Those treated in a separate vocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-4 sample. These treated in a separate small grant intervention (SCY) which occurred after KLPS-3 population weights, SCY and VocEd control group weights, and KLPS intensive tracking weights. Standard errors are clustered at the 1998 school level. The Joint F-Test (p-value) gives the p-value spote with a F-test on the joint significance of the treatment, cost-sharing, and saturation coefficients against the mulh pypothesis that all three coefficients are jointly equal to zero. The FDR adjustment is carried out across the four outcomes within this family separately by panel (full sample, females, males, older than 12, and 12

	(1)	(2)	(3)	(4)
	Per-Capita	Log Per-Capita	Household	Log Household
	Household Earnings	Household Earnings	Tax Spending	Tax Spending
Panel A: Full Sample				
Treatment $(\lambda_1)$	239*	.12	17	.19
	(129)	(.11)	(30)	(.16)
Cost Sharing $(\lambda_2)$	-157	04	-27	14
Seturation ().)	(120) 1011*	(.08)	(25) 241*	(.14)
Saturation (73)	(604)	(.44)	(136)	(.93)
Control Mean	1296	6.2	146	5.37
Treatment Effect (%)	18.4	11.0	11.4	17.1
Joint F-Test (p-value)	.018	.075	.066	.159
Treatment FDR q-value	.380	.380	.569	.380
Number Observations	4074	3946	4086	989
Panel B: Females				
Treatment $(\lambda_1)$	36	01	-32	14
	(107)	(.12)	(26)	(.26)
Cost Sharing $(\lambda_2)$	63	.07	37	.12
	(105)	(.12)	(30)	(.23)
Saturation $(\lambda_3)$	-1691***	-1.74**	-385**	-2.02
	(621)	(.82)	(153)	(1.44)
Control Mean	973	5.99	69	5.02
Treatment Effect (%)	3.7	8	-46.3	-15.2
Joint F-Test (p-value)	0.013	0.067	0.096	0.573
Number Observations	2000	2002	2108	255
Number Observations	2033	2003	2108	000
Panel C: Males	100*	24		22*
Treatment $(\lambda_1)$	439*	.24	64	.32*
$C_{1} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{2$	(252)	(.16)	(64)	(.19)
Cost Sharing $(\lambda_2)$	-373	10	-69	27
Saturation $(\lambda_{-})$	(223)	- 28	-131	- 74
Daturation (73)	(1075)	(67)	(252)	(1.10)
Control Mean	1623	6.4	221	5.51
Treatment Effect (%)	27.1	21.2	29.1	27.7
Joint F-Test (p-value)	0.126	0.439	0.122	0.103
Treatment FDR q-value	.222	.222	.222	.222
Number Observations	1975	1943	1978	634
Panel D: Older than 12				
Treatment $(\lambda_1)$	565**	.31**	97	.56**
· · /	(232)	(.15)	(61)	(.25)
Cost Sharing $(\lambda_2)$	-424*	26**	-120**	42*
	(219)	(.12)	(56)	(.25)
Saturation $(\lambda_3)$	865	18	-129	26
0 1 1 1	(1022)	(.61)	(239)	(1.13)
Control Mean	1082	6	128	5.25
Ireatment Effect (%)	52.2	20.9	10.010	44.3
Joint F-Test (p-value)	0.119	0.105	0.018	0.092
Number Observations	2030	1984	2044	.000 509
	2039	1304	2044	502
Panel E: 12 or Younger	22			00
Treatment $(\lambda_1)$	-22 (171)	04	-40 (32)	.00
Cost Sharing (1.)	(111)	(.10)	(55) 54*	(.20)
$\cos \sin \sin \left( \Lambda_2 \right)$	(188)	.14 ( 12)	(30)	(19)
Saturation $(\lambda_2)$	-2967**	-1.74**	-320	74
	(1138)	(.69)	(205)	(1.70)
Control Mean	1501	6.37	161	5.41
Treatment Effect (%)	-1.5	-3.7	-27.9	.1
Joint F-Test (p-value)	0.049	0.085	0.293	0.904
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	1982	1909	1989	474

Table 23: Household Earnings - Pooled (untrimmed)

Notes: Columns (1) and (2) use KLPS-4 data, and columns (3) and (4) use KLPS-3 and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are untrimmed. See Section 8 for notes on outcome construction. See Table 22 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)
	Per-Capita	Log Per-Capita	Household	Log Household
	Household Earnings	Household Earnings	Tax Spending	Tax Spending
Panel A: Full Sample				
Treatment $(\lambda_1)$	239*	.12	17	.19
	(129)	(.11)	(30)	(.16)
Cost Sharing $(\lambda_2)$	-157	04	-27	14
	(120)	(.08)	(25)	(.14)
Saturation $(\lambda_3)$	-1011	92	-241	92
Control Moon	(004)	(.44)	(150)	(.93)
Trootmont Effort (%)	1290	0.2	140	0.07 17 1
Ioint E-Test (n-value)	018	075	066	150
Treatment FDB a-value	380	380	569	380
Number Observations	4074	3946	4086	989
	1011	0040	4000	505
Panel B: Females				
Ireatment $(\lambda_1)$	36	01	-32	14
	(107)	(.12)	(26)	(.26)
Cost Sharing $(\lambda_2)$	63	.07	37	.12
	(105)	(.12)	(30)	(.23)
Saturation $(\lambda_3)$	-1691***	-1.(4**	-385***	-2.02
Control Moon	(021)	(.82)	(153)	(1.44)
Control Mean	973	5.99	09	5.02
List E Test (n ended)	0.019	8	-40.5	-15.2
Joint F-Test (p-value) Trootmont FDP a voluo	0.013	0.067	0.096	0.573
Number Observations	2000	2002	2108	255
	2055	2005	2100	333
Panel C: Males	10.01			
Treatment $(\lambda_1)$	439*	.24	64	.32*
	(252)	(.16)	(64)	(.19)
Cost Sharing $(\lambda_2)$	-375	16	-89	27
	(229)	(.13)	(57)	(.19)
Saturation $(\lambda_3)$	-484	28	-131	(4
Control Moon	(1075)	(.07)	(252)	(1.10)
Control Mean Treatment Effect (07)	1023	0.4	221	0.01 07.7
Ioint F Test (p value)	0.126	0.420	29.1	0.102
Trootmont FDP a value	0.120	0.409	0.122	0.105
Number Observations	1075	.222	.222	.222
Number Observations	1975	1345	1970	034
Panel D: Older than 12				
Treatment $(\lambda_1)$	565**	.31**	97	.56**
	(232)	(.15)	(61)	(.25)
Cost Sharing $(\lambda_2)$	-424*	26**	-120**	42*
	(219)	(.12)	(56)	(.25)
Saturation $(\lambda_3)$	865	18	-129	26
0 + 11	(1022)	(.01)	(239)	(1.13)
Control Mean	1082	6 26 0	128 75 c	5.25
Leint E Test (n volue)	0.110	20.9	75.0	44.5
Joint F-Test (p-value)	0.119	0.105	0.018	0.092
Ireatment FDR q-value	.050	.050	.050	.000
Number Observations	2039	1964	2044	302
Panel E: 12 or Younger				
Treatment $(\lambda_1)$	-22	04	-45	.00
	(171)	(.13)	(33)	(.23)
Cost Sharing $(\lambda_2)$	15	.14	54*	.10
a	(188)	(.12)	(30)	(.19)
Saturation $(\lambda_3)$	-2967**	-1.74**	-320	74
a . 114	(1138)	(.69)	(205)	(1.70)
Control Mean	1501	6.37	161	5.41
Treatment Effect (%)	-1.5	-3.7	-27.9	.1
Joint F-Test (p-value)	0.049	0.085	0.293	0.904
1 reatment FDR q-value	1.000	1.000	1.000	1.000
number Observations	1982	1909	1989	4/4

Table 24: Household Earnings - KLPS-4 (trimmed)

Notes: Analysis uses KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. See Section 8 for notes on outcome construction. See Table 22 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

#### Table 25: Household Earnings - Pooled (trimmed, including SCY and VocEd)

	(1)	(2)	(3)	(4)
	Per-Capita	Log Per-Capita	Household	Log Household
	Household Earnings	Household Earnings	Tax Spending	Tax Spending
Panel A: Full Sample				8
Treatment ()	057**	08	E	05
Treatment $(\lambda_1)$	(115)	.00	-0	.00
	(115)	(.09)	(20)	(.12)
Cost Sharing $(\lambda_2)$	-48	02	-16	12
	(112)	(.07)	(15)	(.10)
Saturation $(\lambda_3)$	350	49	-243**	49
	(662)	(.34)	(118)	(.76)
Control Mean	1295	6.22	79	5.32
Treatment Effect (%)	19.9	7.5	-5.7	5.1
Joint F-Test (p-value)	124	246	064	438
Treatment FDB a-value	132	1.000	1.000	1.000
Number Observations	4026	4779	E755	1949
Number Observations	4950	4778	9799	1242
Panel B: Females				
Treatment $(\lambda_1)$	25	02	-17	.01
	(102)	(.10)	(20)	(.24)
Cost Sharing $(\lambda_{i})$	74	00	17	- 04
Cost bharing (75)	(102)	(10)	(91)	(17)
	(102)	(.10)	(21)	(.17)
Saturation $(\lambda_3)$	-1268	-1.28	-257	-1.51
	(635)	(.79)	(114)	(1.15)
Control Mean	969	5.98	39	4.85
Treatment Effect (%)	2.6	-2.4	-42.9	.5
Joint F-Test (p-value)	0.066	0.062	0.134	0.505
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	2511	2395	2927	456
	2011	2000	2021	
Panel C: Males				
Treatment $(\lambda_1)$	463**	.16	7	.07
	(207)	(.13)	(34)	(.15)
Cost Sharing $(\lambda_2)$	-165	12	-46	15
0(2)	(188)	(10)	(30)	(15)
Seturation $(\lambda_{-})$	1737	21	-237	- 18
Saturation (A3)	(1956)	(65)	(174)	(1.01)
	(1250)	(.05)	(174)	(1.01)
Control Mean	1649	0.48	119	5.58
Treatment Effect (%)	28.1	14.8	5.8	6.5
Joint F-Test (p-value)	0.164	0.563	0.097	0.738
Treatment FDR q-value	.105	.412	.725	.725
Number Observations	2425	2383	2828	786
Barral D. Oldar than 10				
Panel D: Older than 12			10	
Treatment $(\lambda_1)$	608***	.25**	43	.30
	(198)	(.12)	(29)	(.22)
Cost Sharing $(\lambda_2)$	-230	19*	-72***	32
	(192)	(.10)	(25)	(.20)
Saturation $(\lambda_3)$	3184**	.57	-137	23
( 0)	(1501)	(.52)	(142)	(.91)
Control Mean	1057	6.01	73	5.17
Treatment Effect (%)	57.5	22.01	59.4	26.4
Loint E Toot (n uclose)	0.020	22.0	0.020	20.4
Joint F-Test (p-value)	0.029	0.149	0.029	0.379
Treatment FDR q-value	.013	.061	.093	.093
Number Observations	2493	2418	2900	638
Panel E: 12 or Younger	,			
Treatment ().)	_95	_ 06	_20	_ 09
$(\Lambda_1)$	-00	00	-99	02
	(182)	(.12)	(29)	(.22)
Cost Sharing $(\lambda_2)$	13	.11	29	.05
	(186)	(.10)	(27)	(.20)
Saturation $(\lambda_3)$	-2613**	-1.60***	-303*	.27
	(1121)	(.56)	(169)	(1.51)
Control Mean	1527	6.42	83	5.41
Treatment Effect (%)	-2.3	-6.2	-46.9	-2.4
Joint F-Test (p-value)	0.098	0.050	0.302	0.987
Trootmont FDP c volue	1.000	1.000	1.000	1.000
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	2390	2307	2802	591

Number Observations 2000 2001 2001 2002 001 Notes: Columns (1) and (2) use KLPS-4 data, and columns (3) and (4) use KLPS-3 and KLPS-4 data. Each observation is for an individual in the last 12 months from the interview date (i.e., the month in which they were interviewed, plus 12 months prior). Results are trimmed at the top 1% of observations. Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voncher. See Section 8 for notes on outcome construction. See Table 22 for notes on the regression specification. Observations are weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1) Por Conito	(2) Log Por Conita	(3) Household	(4) Log Housek-1
	Per-Capita Household Earnings	Log Per-Capita Household Earnings	Tax Spending	Tax Spending
Panel A: Full Sample	Household Earnings	Household Earnings	Tax Spending	Tax Spending
Treatment $(\lambda_1)$	21	.15	1	.15
	(13)	(.11)	(1)	(.14)
Cost Sharing $(\lambda_2)$	-18	12	-2	11
0 ( 2)	(12)	(.09)	(1)	(.13)
Saturation $(\lambda_3)$	-64	00	-6	65
	(59)	(.46)	(5)	(.89)
Control Mean	111	3.91	7	2.91
Treatment Effect (%)	18.6	14.4	18.4	13.5
Joint F-Test (p-value)	.064	.465	.131	.375
Treatment FDR q-value	.452	.452	.452	.452
Number Observations	4073	3773	8631	1078
Panel B: Females				
Treatment $(\lambda_1)$	1	.12	-1	10
(1)	(9)	(.12)	(1)	(.24)
Cost Sharing $(\lambda_2)$	-1	01	1	.09 [´]
0 ( 2)	(9)	(.11)	(1)	(.19)
Saturation $(\lambda_3)$	-131**	03	-11	93
,	(59)	(.62)	(7)	(1.24)
Control Mean	87	3.69	4	2.61
Treatment Effect (%)	1.2	11.4	-21.7	-10.8
Joint F-Test (p-value)	0.139	0.622	0.466	0.887
Treatment FDR q-value	1.000	1.000	1.000	1.000
Number Observations	2103	1899	4360	396
Panel C: Males				
Treatment $(\lambda_1)$	40	.19	3	.25
	(27)	(.16)	(3)	(.15)
Cost Sharing $(\lambda_2)$	-34	22	-4*	21
0.001 0.000 0.000 (0.02)	(24)	(.13)	(2)	(.17)
Saturation $(\lambda_2)$	-11	.01	-2	66
( ),	(109)	(.69)	(11)	(1.02)
Control Mean	135	4.13	10	3.05
Treatment Effect (%)	29.6	17.3	33.2	22.4
Joint F-Test (p-value)	0.186	0.396	0.124	0.141
Treatment FDR q-value	.328	.328	.328	.328
Number Observations	1970	1874	4271	682
Panel D: Older than 12				
Treatment $(\lambda_1)$	51**	39**	5*	46**
(/1)	(25)	(.17)	(3)	(21)
Cost Sharing $(\lambda_2)$	-39*	22	-6**	38*
0 (12)	(23)	(.15)	(2)	(.20)
Saturation $(\lambda_3)$	59	.85	-3	35
(//3)	(105)	(.89)	(10)	(.99)
Control Mean	95	3.68	6	2.85
Treatment Effect (%)	53.5	32.8	76.0	37.5
Joint F-Test (p-value)	0.189	0.164	0.023	0.101
Treatment FDR q-value	.065	.065	.065	.065
Number Observations	2043	1900	4309	556
Panel E: 19 or Vounaor				
Treatment $(\lambda_1)$	-4	- 02	-2	- 02
incontent (A1)	(13)	(19)	(1)	( 21)
Cost Sharing (A ₂ )	-3	- 07	(±) 9*	11
Corr Duaring (72)	(15)	(19)	(1)	(17)
Saturation $(\lambda_2)$	-202**	-1.00	-7	- 34
	(88)	(67)	(7)	(1.51)
Control Mean	126	4.12	8	2.92
Treatment Effect (%)	-3.1	-2.4	-19.9	-1.9
Joint F-Test (n-value)	0.113	0.351	0.367	0 908
Treatment FDB a-value	1.000	1.000	1.000	1 000
Number Observations	1977	1825	4269	510
	1011	1020	1200	010

### Table 26: Household Earnings - Pooled (trimmed, last month)

 $\overline{Notes}$ : Columns (1) and (2) use KLPS-4 data, and columns (3) and (4) use KLPS-3 and KLPS-4 data. Each observation is for an individual in the last 30 days from the interview date. Results are trimmed at the top 1% of observations. Results See Section 8 for notes on outcome construction. See Table 22 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9) Log	(10) Non-Zero Wage
	Total Hours Worked	Log Total Hours Worked	Non-Zero Hours	Farm Hours Worked	Log Farm Hours Worked	Wage Hours Worked	Log Wage Hours Worked	Self-Employment Hours Worked	Self-Employment Hours Worked	or Self-Employment Hours
Panel A · Full Sample										
Treatment $(\lambda_i)$	1	08***	00	-1**	- 05	1**	03	-0	- 10	0.4**
Treatment (A1)	1	.00	.00	=1	00	(1)	.03	-0	10	.04
	(1)	(.03)	(.01)	(0)	(.08)	(1)	(.04)	(1)	(.07)	(.01)
Cost Sharing $(\lambda_2)$	-0	01	00	0	.01	-1	.01	1	.09	01
	(1)	(.03)	(.01)	(0)	(.07)	(1)	(.04)	(1)	(.07)	(.01)
Saturation $(\lambda_3)$	2	.10	03	-3	49	3	02	3	.23	.07
( 5)	(4)	(.14)	(.07)	(2)	(.38)	(5)	(.28)	(4)	(.50)	(.07)
Control Mean	24	3.28	64	4	2	14	3.97	7	3.20	59
Treatment Effect (07)	4.2	7.20	6	01.0	2.0	10.2	9.6	4.1	10.5	7.0
Lint E Test (n selve)	471	0.01	.0	=21.0	=2.0	10.0	2.0	-4.1	=10.0	070
Joint F-Test (p-value)	.471	.031	.910	.243	.040	.180	.820	.545	.380	.070
Treatment FDR q-value	.165	.060	.434	.100	.434	.100	.434	.434	.222	.060
Number Observations	13807	8477	13807	13807	2768	13807	4872	13807	2598	13807
Panal B. Famalas										
Tuner D. Females	0	00	00	188	00	0	00	1	07	00
Treatment $(\lambda_1)$	-0	.06	02	-1	00	0	00	1	.07	.02
	(1)	(.05)	(.02)	(0)	(.10)	(1)	(.09)	(1)	(.08)	(.02)
Cost Sharing $(\lambda_2)$	1	.06	00	1	.04	0	.07	0	02	01
	(1)	(.05)	(.02)	(0)	(.10)	(1)	(.08)	(1)	(.10)	(.02)
Saturation $(\lambda_3)$	1	.27	05	-4	48	1	.33	2	.86*	.06
	(6)	(.24)	(.10)	(3)	(.64)	(5)	(.35)	(5)	(.49)	(.10)
Control Mean	20	3 14	58	4	2	10	3.2	6	31	42
Treatment Effect (07)	_ 7	57	_4.9	_97.7	_2.2	10	_ 0	15.9	6.5	5.0
Lint E Test (n selve)	1	0.117	=4.0	-21.1	=2.2	1.5	0	10.0	0.0	0.545
Joint F-Test (p-value)	0.915	0.117	0.409	0.117	0.890	0.975	0.509	0.399	0.382	0.545
Treatment FDR q-value	.995	.682	.682	.248	.820	.995	.995	.682	.820	.682
Number Observations	6860	3672	6860	6860	1558	6860	1671	6860	1213	6860
Panal C: Malas										
Treatment ()	0**	00**	0.2*	1	0.4	0**	04	1	0.4**	05**
Treatment $(\lambda_1)$	2	.09	.03	-1	04	3	.04	-1	24	.00)
	(1)	(.04)	(.02)	(1)	(.11)	(1)	(.06)	(1)	(.11)	(.02)
Cost Sharing $(\lambda_2)$	-1	05	01	-0	03	-2*	02	1	.19*	02
	(1)	(.05)	(.02)	(0)	(.10)	(1)	(.07)	(1)	(.11)	(.02)
Saturation $(\lambda_3)$	2	01	00	-1	52	5	17	3	21	.08
	(6)	(.18)	(.09)	(2)	(.44)	(7)	(.31)	(6)	(.60)	(.09)
Control Mean	28	3.38	69	4	2	18	3.31	9	3 43	62
Treatment Effect (%)	7.8	8.5	4.4	-15.0	-1.8	14.9	3.0	-16.5	-27.1	7.8
Ioint E Test (n value)	0.116	0.161	0.190	0 569	0.697	0.007	0.787	0.995	0.162	0.006
Joint F-Test (p-value)	0.110	0.101	0.189	0.508	0.027	0.097	0.181	0.000	0.105	0.090
Treatment FDR q-value	.069	.069	.069	.219	.266	.069	.240	.108	.069	.069
Number Observations	6947	4805	6947	6947	1210	6947	3201	6947	1385	6947
Panel D: Older than 19										
Treatment ().)	9*	07	01	0	10	0*	04	1	10	0.4*
Treatment $(\lambda_1)$	(1)	.01	.01	-0	=.10	(1)	(05)	(1)	10	.04
	(1)	(.04)	(.01)	(1)	(.09)	(1)	(.00)	(1)	(.09)	(.02)
Cost Sharing $(\lambda_2)$	-1	.01	03*	0	.11	-2**	00	1	.24***	03
	(1)	(.04)	(.02)	(0)	(.09)	(1)	(.05)	(1)	(.08)	(.02)
Saturation $(\lambda_3)$	0	14	00	-2	67	5	29	-3	60	.04
	(5)	(.19)	(.08)	(3)	(.51)	(5)	(.25)	(4)	(.47)	(.08)
Control Mean	26	3.32	.69	4	3	15	3.3	8	3.23	.57
Treatment Effect (%)	6.8	6.4	1.7	-11.2	-4.0	10.8	4.1	8.9	-10.6	6.5
loint E-Test (n-value)	0.216	0.124	0.226	0.838	0.475	0.077	0.370	0.119	0.027	0.261
Transformer FDD a surface	405	405	424	49.4	49.4	405	49.4	494	494	405
Treatment FDR q-value	.420	.420	.404	.404	.404	.420	.404	.404	.404	.423
Number Observations	0898	4578	0898	6898	1470	0898	2007	0898	1074	6898
Panel E: 12 or Younger										
Treatment $(\lambda_1)$	1	09*	00	-1*	- 00	2	02	-1	- 09	04*
frequencine (A1)	(1)	(05)	(.02)	(1)	(11)	(1)	(.06)	(1)	(19)	( 02)
Cost Sharing ()	(1)	(.00)	(.02)	(1)	(.11)	(1)	(.00)	(1)	(.12)	(.02)
Cost Sharing $(\lambda_2)$	-0	02	.01	0	09	-1	.01	0	08	01
	(1)	(.04)	(.02)	(0)	(.11)	(1)	(.07)	(1)	(.12)	(.02)
Saturation $(\lambda_3)$	4	.34	02	-4	35	3	.26	8	1.26	.13
	(6)	(.22)	(.08)	(2)	(.54)	(9)	(.53)	(6)	(.83)	(.09)
Control Mean	22	3.21	.59	4	2	13	3.23	7	3.36	.48
Treatment Effect (%)	3.4	8.6	.4	-29.8	2	12.4	2.3	-18.6	-9.8	8.4
Joint F-Test (n-value)	0.830	0.226	0.842	0.082	0.658	0.521	0.960	0.115	0.100	0.149
Treatment FDB c value	663	357	033	357	033	357	801	387	663	357
Number Observet		2001	.335	.001	1005	2051	.001	.001	1000	.001
number Observations	6856	3852	0890	6856	1265	0890	2347	6856	1008	0830

### Table 27: Labor Supply - Pooled

 Number Observations
 6556
 3552
 6856
 1265
 6856
 2344
 6856
 1008
 6856

 Notes:
 Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. See Section 9 for notes on outcome construction. Treatment is an indicator variable equal to 1 for PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming on average compared to Group 3. Reported estimates for Female and Male are constructed from a single regression including treatment-female, cost-sharing-female, and startation-female interaction terms. Reported estimates for Value as single regression, including an indicator for those older than 12 at baseline and analogous interaction terms to Panels B and C. Covariates follow Baird et al. (2016) and include controls for baseline 1998 primary school population, geographic zone of the school, survey wave and month to interview, a female indicator variable, baseline 1998 school grade fixed fielders, the average school test score on the 1996 Busia District mock exams, total primary school pupils within 6 km, and a cost-sharing school indicator. Those treated in a separate vocational training intervention (VocEd) which occurred prior to KLPS-3 are dropped from the KLPS-4 and KLPS 4 stample. Observations are weighted to be perspensation inderview of the original PSDP population, and include KLPS population weights, SCY and VocEd control group weights, and KLPS 4 interview tracking weights. Standard errors are clustered at the 1998 school grevel. The Joint F-Test (p-value) gives the p-value associated with an F-test in the significance of the treatment, cost-sharing, and startation coefficients as gain that all three coefficients are given years. The FDR adjustment is carried out across the ten outcomes within this family separately by panel (full sample, females, males, older than 12, and 12 or young

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
									Log	Non-Zero Wage
	Total	Log Total	Non-Zero	Farm Hours	Log Farm	Wage Hours	Log Wage	Self-Employment	Self-Employment	or Self-Employment
	Hours Worked	Hours Worked	Hours	Worked	Hours Worked	Worked	Hours Worked	Hours Worked	Hours Worked	Hours
Panel A: Full Sample										
Treatment $(\lambda_1)$	-0	.06	02	-2**	08	2	05	-2	15*	.03
	(1)	(.04)	(.02)	(1)	(.10)	(1)	(.06)	(1)	(.08)	(.02)
Cost Sharing $(\lambda_2)$	1	01	.03	1	.04	-1	.01	2*	.19**	.01
	(1)	(.05)	(.02)	(1)	(.09)	(1)	(.07)	(1)	(.08)	(.02)
Saturation $(\lambda_3)$	-13	60**	03	-5	80	-6	80**	1	11	.00
	(9)	(.26)	(.09)	(4)	(.51)	(10)	(.34)	(8)	(.57)	(.13)
Control Mean	38	3.52	.86	8	2	20	3.76	14	3.49	.67
Treatment Effect (%)	6	5.9	-2.8	-26.3	-3.1	10.1	-5.6	-15.6	-16.4	4.6
Joint F-Test (p-value)	.380	.016	.382	.146	.448	.271	.134	.145	.117	.296
Treatment FDR q-value	.349	.285	.285	.285	.317	.285	.317	.285	.285	.304
Number Observations	4135	3518	4135	4135	1589	4135	1618	4135	1343	4135
Panel B. Females										
Treatment ().)	_9	02	- 06**	-9	- 02	-0	- 14	-0	07	00
freatment (XI)	(2)	(07)	(.03)	(1)	(13)	(2)	(10)	(2)	(11)	(.03)
Cost Sharing ().)	(2)	(.07)	(.00)	2	(.15)	2	(.10)	2	04	(.00)
Cost Sharing (X2)	(2)	(07)	(03)	(1)	(14)	(2)	(10)	(2)	(13)	(03)
Saturation $(\lambda_{\alpha})$	-10	- 27	- 08	-6	- 61	-11	- 30	(2)	50	- 11
Saturation (X3)	(12)	(40)	(17)	(7)	(84)	(12)	(68)	(11)	(73)	(18)
Control Mean	33	3.4	(.17)	8	2	14	3.84	11	3 30	54
Trootmont Effort (%)	7.0	2.4	.0	23.0	2	14	14.7	2.2	6.0	.04
Loint E Tost (n voluo)	0.042	0.202	0.127	-23.5	0.837	2	-14.7	0.665	0.644	.0
Trootmont EDP a value	880	1.000	460	880	1.000	1.000	880	1.000	1.000	1.000
Number Observations	2112	1653	.405	.009	017	2112	580	2112	618	2112
Trumber Observations	2112	1055	2112	2112	517	2112	380	2112	010	2112
Panel C: Males										
Treatment $(\lambda_1)$	2	.09	.01	-2	15	4*	01	-4**	31**	.06*
	(2)	(.05)	(.02)	(2)	(.17)	(2)	(.08)	(2)	(.12)	(.03)
Cost Sharing $(\lambda_2)$	-2	10*	.00	-0	.03	-4**	03	2	.30**	03
	(2)	(.05)	(.02)	(1)	(.16)	(2)	(.07)	(2)	(.11)	(.03)
Saturation $(\lambda_3)$	-17	85***	.01	-4	-1.05	-2	-1.03***	1	52	.09
	(11)	(.30)	(.10)	(5)	(.75)	(14)	(.38)	(10)	(.67)	(.14)
Control Mean	44	3.62	.92	8	3	25	3.72	17	3.56	.8
Treatment Effect (%)	4.1	8.5	1.4	-28.5	-6.1	15.8	-1.4	-23.9	-36.9	7.3
Joint F-Test (p-value)	0.107	0.006	0.902	0.363	0.485	0.059	0.040	0.205	0.055	0.347
Treatment FDR q-value	.273	.228	.331	.228	.317	.201	.522	.201	.190	.220
Number Observations	2023	1865	2023	2023	672	2023	1038	2023	725	2023
Panel D: Older than 12										
Treatment $(\lambda_1)$	2	.06	00	-1	10	4**	.06	-1	22*	.03
	(2)	(.05)	(.03)	(1)	(.13)	(2)	(.08)	(2)	(.13)	(.03)
Cost Sharing $(\lambda_2)$	-1	03	00	1	.21*	-5**	14*	4**	.38***	02
0(1)	(2)	(.05)	(.03)	(1)	(.11)	(2)	(.08)	(2)	(.12)	(.03)
Saturation $(\lambda_3)$	-12	86***	.10	-2	86	5	-1.06**	-14	65	02
(	(13)	(.32)	(.15)	(6)	(.68)	(13)	(.44)	(10)	(.66)	(.19)
Control Mean	40	3.55	.89	8	3	19	3.72	14	3.43	.7
Treatment Effect (%)	3.9	6.1	6	-9.5	-3.9	21.9	6.0	-10.3	-25.1	4.2
Joint F-Test (p-value)	0.386	0.004	0.875	0.779	0.281	0.069	0.021	0.143	0.019	0.688
Treatment FDR q-value	.800	.800	1.000	.859	.800	.673	.800	.800	.673	.800
Number Observations	2071	1812	2071	2071	860	2071	762	2071	756	2071
Danal F. 10 on Vounaa										
Transfer E. 12 of Tounger	1	07	0.2	0**	00	1	10	9	00	0.1
meanment $(\lambda_1)$	-1	.07	03	-3	08	(9)	12	-3	08	.04
Cost Sharing (1)	(2)	(.08)	(.03)	(1)	(.10)	(2)	(.08)	(2)	(.13)	(.04)
$Oost Dilating (\Lambda_2)$	(2)	.00	.04	(1)	12	(2)	.10	1 (1)	.02	.02
Potamotion ())	(2)	(.00)	(.03)	(1)	(61.)	(2)	(.08)	(1)	(.13)	(.04)
Saturation $(\lambda_3)$	-13	30	10	-9.	93	-14	40	10.	.49	.10
Control Moon	(14)	(.40)	(.12)	(0)	(.(1)	(18)	(.49)	(9)	(.08)	(.20)
Control Mean Treastment Effect (67)	30	3.48	.83	0 20 E	2 4	21	3.78	14	3.34	.00
Loint E Test (n mb-r)	-2.0	0.0	-0.0	-00.0	-0.4	0.0	-13.2	-21.7	-1.9	0.4
Treatment EDD a relieve	0.043	0.482	0.300	0.028	1.000	1.000	0.382	0.121	0.082	1.000
March an Observation	1.000	1.000	1.000	.074	1.000	1.000	.0/1	.0/1	1.000	1.000
number Observations	2011	1098	2011	2011	702	2011	838	2011	0/1	2011

## Table 28: Labor Supply - KLPS-4

Notes: Analysis uses KLPS-4 data. See Section 9 for notes on outcome construction. See Table 27 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
									Log	Non-Zero Wage
	Total	Log Total	Non-Zero	Farm Hours	Log Farm	Wage Hours	Log Wage	Self-Employment	Self-Employment	or Self-Employment
	Hours Worked	Hours Worked	Hours	Worked	Hours Worked	Worked	Hours Worked	Hours Worked	Hours Worked	Hours
Panel A: Full Sample										
Treatment $(\lambda_1)$	2*	.07	00	-0	.05	2*	.04	0	.01	.04
	(1)	(.04)	(.02)	(1)	(.08)	(1)	(.07)	(1)	(.10)	(.03)
Cost Sharing $(\lambda_2)$	-2**	02	03	-0	07	-2**	04	0	.03	04*
	(1)	(.05)	(.02)	(0)	(.07)	(1)	(.06)	(1)	(.11)	(.02)
Saturation $(\lambda_3)$	4	.33	23*	-2	.06	3	22	3	.21	02
	(4)	(.29)	(.13)	(3)	(.44)	(6)	(.45)	(5)	(.93)	(.13)
Control Mean	25	3.12	.75	4	2	15	3.05	6	2.97	.6
Treatment Effect (%)	6.3	7.0	5	-8.4	2.1	12.1	3.9	1.1	1.3	6.0
Joint F-Test (p-value)	.087	.362	.054	.764	.803	.036	.769	.814	.979	.274
Treatment FDR q-value	.540	.540	1.000	.915	.915	.540	.915	1.000	1.000	.540
Number Observations	4595	3472	4595	4595	1179	4595	2089	4595	902	4595
Panel B: Females										
Treatment $(\lambda_1)$	0	.08	05	-1**	04	1	.02	1	.22	.03
( -)	(2)	(.08)	(.03)	(1)	(.09)	(2)	(.13)	(1)	(.14)	(.04)
Cost Sharing $(\lambda_2)$	-2	02	03	0	03	-2	04	-0	19	04
0(1)	(2)	(.08)	(.03)	(0)	(.08)	(2)	(.15)	(1)	(.16)	(.04)
Saturation $(\lambda_3)$	-2	.18	25	-5	11	-1	10	4	1.15	.04
	(8)	(.45)	(.19)	(4)	(.55)	(7)	(.79)	(6)	(1.14)	(.19)
Control Mean	19	2.9	.71	5	2	10	2.83	4	2.62	.5
Treatment Effect (%)	2.5	7.3	-6.5	-31.4	-1.8	5.2	1.6	32.4	19.9	6.0
Joint F-Test (p-value)	0.709	0.795	0.026	0.077	0.893	0.835	0.994	0.478	0.394	0.748
Treatment FDR q-value	1.000	.673	.441	.125	1.000	1.000	1.000	.441	.441	.702
Number Observations	2260	1543	2260	2260	641	2260	750	2260	455	2260
Panel C: Males										
Treatment ().)	3	07	04	1	16	3*	05	-1	- 91	04
freatment (XI)	(2)	(00)	(03)	(1)	(12)	(2)	(12)	(1)	(15)	(04)
Cost Sharing $(\lambda_{\alpha})$	-2	- 02	- 03	-1	- 11	-3*	- 04	(1)	26*	- 04
0 000 0000008 (0.2)	(2)	(07)	(02)	(1)	(.09)	(2)	(10)	(1)	(15)	(04)
Saturation $(\lambda_2)$	8	.43	21	0	.27	7	27	1	37	08
	(6)	(.32)	(.19)	(3)	(.52)	(8)	(.49)	(6)	(.90)	(.19)
Control Mean	30	3.29	.79	3	2	19	3.18	7	3.26	.69
Treatment Effect (%)	8.8	6.8	4.7	26.0	6.9	15.9	5.2	-18.4	-24.2	6.0
Joint F-Test (p-value)	0.258	0.562	0.175	0.567	0.549	0.196	0.802	0.494	0.381	0.498
Treatment FDR q-value	.563	.563	.563	.563	.563	.563	.563	.563	.563	.563
Number Observations	2335	1929	2335	2335	538	2335	1339	2335	447	2335
Daniel D. Olden than 10										
Transforment () )	0	05	04	0	0.9	0	01	0	0.2	01
Treatment $(\lambda_1)$	-0	.05	04	-0	02	-0	.01	(1)	.05	01
Cost Sharing ().)	-1	(.07)	- 03	-1	- 05	-1	(.11)	(1)	(.13)	- 02
Cost bharing (72)	(1)	(07)	(.03)	(1)	(10)	(1)	(00)	(1)	(13)	(.03)
Saturation $(\lambda_2)$	-8	- 11	- 34*	-0	- 44	-5	- 67	-3	-1.13	- 17
Survivation (7/3)	(6)	(.35)	(.18)	(3)	(.52)	(6)	(.43)	(5)	(.91)	(.22)
Control Mean	27	3.18	.8	4	2	16	3.12	7	2.95	.64
Treatment Effect (%)	1	4.7	-4.6	-6.0	8	4	.8	4.3	2.8	-1.1
Joint F-Test (p-value)	0.429	0.725	0.054	0.281	0.661	0.570	0.376	0.736	0.368	0.848
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2291	1814	2291	2291	616	2291	1042	2291	542	2291
D1 E. 10 V		-	-	-		-	-	-		
Panel E: 12 or Younger		00	0.2	0	19	0**	05	0	0.9	07**
$11$ reatment $(\lambda_1)$	3	.09	.03	-0	.13	3	60.	-0 (1)	03	.07
Cost Sharing ()	(1)	(.05)	(.03)	(1)	(.10)	(1)	(.08)	(1)	(.17)	(.03)
$\cos \sin \sin \left( \lambda_2 \right)$	-3.	00	02	(0)	07	-3	10	(1)	09	00)
Saturation ())	(1)	(.00) 72**	(.02)	(0)	(.08)	(1)	(.09)	(1)	(.10)	(.03)
Saturation (A3)	(6)	(24)	12	-0 (2)	.02	(10)	.22	(10)	(1.40)	.10
Control Mean	22	3.05	71	2	0	14	2.00	(10) 5	2	56
Treatment Effect (%)	12.8	8.5	3.6	_0.8	55	23.0	4.0	_3.0	_3.0	19.7
Joint F=Test (n-value)	0.031	0.128	0.410	0 709	0.550	0.014	0.661	0.765	0.605	0.004
Treatment FDB o-volue	110	230	636	722	364	106	799	784	784	106
Number Observations	2304	1658	2304	2304	563	2304	1047	2304	360	2304
	2004	1000	2004	2004	000	2004	1011	2004	000	2004

## Table 29: Labor Supply - KLPS-3

Notes: Analysis uses KLPS-3 data. See Section 9 for notes on outcome construction. See Table 27 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
									Log	Non-Zero Wage
	Total	Log Total	Non-Zero	Farm Hours	Log Farm	Wage Hours	Log Wage	Self-Employment	Self-Employment	or Self-Employment
	Hours Worked	Hours Worked	Hours	Worked	Hours Worked	Worked	Hours Worked	Hours Worked	Hours Worked	Hours
Panel A: Full Sample	1	0.0***	00	1	01	0*	00	1	01	0.9**
Treatment $(\lambda_1)$	(1)	.00	.00	-1 (1)	01	(1)	.02	(1)	.01	.03
Cost Sharing $(\lambda_0)$	-1	- 01	- 00	0	- 02	-1	01	0	- 02	- 01
Coot 51101116 (7/2)	(1)	(.03)	(.01)	(1)	(.05)	(1)	(.03)	(1)	(.06)	(.01)
Saturation $(\lambda_3)$	3	.07	02	-5	56	3	10	9	.78*	.06
(	(6)	(.11)	(.06)	(4)	(.39)	(7)	(.19)	(6)	(.44)	(.06)
Control Mean	40	3.87	.64	8	3	24	3.95	10	3.7	.52
Treatment Effect (%)	3.5	5.8	.5	-13.6	4	6.8	2.4	9.8	1.4	5.4
Joint F-Test (p-value)	.493	.048	.969	.463	.493	.322	.507	.349	.289	.079
Treatment FDR q-value	.316	.070	.638	.316	.638	.238	.517	.375	.638	.144
Number Observations	15334	9741	15334	15334	3374	15334	5457	15334	3049	15334
Panel B: Females										
Treatment $(\lambda_1)$	0	.06	02	-2**	03	1	.01	2*	.14	.02
	(1)	(.04)	(.02)	(1)	(.09)	(1)	(.06)	(1)	(.08)	(.02)
Cost Sharing $(\lambda_2)$	-0	.01	.00	1	.02	-0	.05	-1	14	00
	(1)	(.05)	(.01)	(1)	(.08)	(1)	(.06)	(1)	(.10)	(.02)
Saturation $(\lambda_3)$	5	.35*	08	-8	44	3	.17	12	1.45***	.02
Control Moon	(9)	(.20)	(.09)	(7)	(.08)	(7)	(.25)	(8)	(.52)	(.10)
Treatment Effect (07)	33 7	3.74	.08	23.0	3	10	3.89	9	3.30	.42
Ioint F Teet (p value)	0.002	0.152	-5.4	-20.9	9	0.063	0.633	0.180	0.044	0.560
Treatment FDB a-value	558	329	379	313	558	558	558	329	329	379
Number Observations	7575	4223	7575	7575	1862	7575	1867	7575	1415	7575
Danal C. Malas		-							-	
Treatment (1.)	2**	06*	0.2*	0	00	2*	03	-0	- 09	0.4**
freatment (M)	(1)	(03)	(01)	(1)	(00)	(1)	(04)	(1)	(.08)	(02)
Cost Sharing $(\lambda_2)$	-1	02	00	-0	06	-1	00	1	.07	01
0(12)	(1)	(.03)	(.01)	(1)	(.07)	(2)	(.05)	(1)	(.08)	(.02)
Saturation $(\lambda_3)$	1	11	.03	-3	72*	3	21	6	.29	.09
	(8)	(.13)	(.07)	(4)	(.42)	(10)	(.24)	(7)	(.47)	(.08)
Control Mean	46	3.98	.69	7	3	31	3.98	12	3.81	.63
Treatment Effect (%)	5.5	5.5	3.6	.0	.1	8.4	2.9	-2.4	-9.2	5.7
Joint F-Test (p-value)	0.156	0.178	0.309	0.640	0.288	0.344	0.506	0.695	0.481	0.127
Treatment FDR q-value	.193	.193	.193	.705	.705	.193	.545	.705	.261	.193
Number Observations	7759	5518	7759	7759	1512	7759	3590	7759	1634	7759
Panel D: Older than 12										
Treatment $(\lambda_1)$	3**	.05*	.02	-1	05	2*	.05	2**	01	.04*
	(1)	(.03)	(.01)	(1)	(.07)	(1)	(.05)	(1)	(.07)	(.02)
Cost Sharing $(\lambda_2)$	-2**	01	02	-1	.06	-2	01	-1	.10*	02
	(1)	(.03)	(.01)	(1)	(.07)	(1)	(.04)	(1)	(.06)	(.02)
Saturation $(\lambda_3)$	6	01	.02	-3	49	9	19	6	.33	.07
Control Mean	44	3.03	68	(3)	(.40)	25	3.00	12	3.72	(.03)
Treatment Effect (%)	7.0	5.1	2.9	-10.7	-1.6	9.4	5.1	20.5	7	6.5
Joint F-Test (p-value)	0.099	0.166	0.420	0.407	0.717	0.208	0.333	0.085	0.157	0.290
Treatment FDR q-value	.156	.166	.217	.301	.356	.171	.223	.156	.554	.166
Number Observations	7690	5248	7690	7690	1810	7690	2801	7690	1830	7690
Panel E: 12 or Younger										
Treatment $(\lambda_1)$	0	.07**	01	-1	.02	1	.01	-0	.03	.03
	(1)	(.04)	(.02)	(1)	(.09)	(2)	(.05)	(1)	(.10)	(.02)
Cost Sharing $(\lambda_2)$	)Ó	02	.01	1	09	-1	.02	`0´	15	.00
/	(1)	(.04)	(.01)	(1)	(.09)	(2)	(.05)	(1)	(.12)	(.02)
Saturation $(\lambda_3)$	1	.15	03	-7*	68	-1	.01	12	1.35*	.09
	(7)	(.17)	(.08)	(4)	(.53)	(13)	(.41)	(9)	(.79)	(.09)
Control Mean	36	3.81	.59	7	3	22	3.91	9	3.69	.48
Treatment Effect (%)	1.3	7.2	9	-14.6	.8	6.0	.9	-2.8	3.2	5.3
Joint F-Test (p-value)	0.954	0.225	0.828	0.333	0.350	0.775	0.911	0.428	0.240	0.315
Treatment FDR q-value	25.01	.648	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
number Observations	1991	4440	1991	(991	1994	7991	2038	1991	1203	1991

Table 30: Labor Supply - Pooled (including SCY and VocEd)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voucher. See Section 9 for notes on outcome construction. See Table 27 for notes on the regression specification. Observations are weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	( )	( )	( )	Employed -		Employed -	Employed -
	Employed -	Employed -	Employed -	Construction/	Employed -	Retail and	Trade
	Agriculture	Fishing	Manufacturing	Casual Labor	Services	Wholesale Trade	Contractor
Panel A: Full Sample							
Treatment $(\lambda_1)$	01**	.00	00	00	.01	00	.00
	(.00)	(.01)	(.00)	(.00)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.00	.00	.00	.00	02	00	.00
	(.00)	(.01)	(.00)	(.00)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	03	07	00	.00	05	.03	01
	(.02)	(.06)	(.03)	(.04)	(.09)	(.04)	(.05)
Control Mean	.02	.03	.03	.02	.19	.04	.03
Treatment Effect (%)	-40.6	11.7	-5.6	-2.9	4.6	-8.3	12.9
Joint F-Test (p-value)	.109	.371	.693	.876	.416	.665	.730
Treatment FDR q-value	.252	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	13768	13768	13760	13768	13760	13762	13762
Panel B: Females							
Treatment $(\lambda_1)$	00	00	01	00	.01	01	00
	(.00)	(.01)	(.00)	(.00)	(.02)	(.01)	(.00)
Cost Sharing $(\lambda_2)$	.00	00	.02***	.00	02	.00	.00
	(.01)	(.01)	(.01)	(.00)	(.02)	(.01)	(.00)
Saturation $(\lambda_3)$	06**	01	02	.01	04	.02	00
	(.03)	(.06)	(.04)	(.03)	(.09)	(.05)	(.03)
Control Mean	.01	0	.01	0	.16	.03	0
Treatment Effect (%)	-22.9	-128.8	-40.7	-124.8	4.3	-32.7	-108.6
Joint F-Test (p-value)	0.261	0.847	0.029	0.489	0.492	0.392	0.635
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6847	6847	6844	6847	6844	6844	6844
Panel C: Males							
Treatment $(\lambda_1)$	01**	.01	.00	.00	.01	.00	.01
	(.01)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.01	.01	01	.01	01	00	.00
	(.00)	(.02)	(.01)	(.01)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	01	11	.01	.00	06	.04	02
	(.03)	(.08)	(.04)	(.06)	(.14)	(.05)	(.09)
Control Mean	.02	.05	.04	.03	.21	.06	.05
Treatment Effect (%)	-50.1	19.5	6.2	9.9	4.7	4.4	16.9
Joint F-Test (p-value)	0.158	0.181	0.775	0.793	0.791	0.912	0.789
Treatment FDR q-value	.509	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	6921	6921	6916	6921	6916	6918	6918
Panel D: Older than 12							
Treatment $(\lambda_1)$	01	.01	.00	01	.01	01	01
( -)	(.01)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	00	01	.01	.01	02	.00	.01
	(.00)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	.00	07	.02	02	04	.00	02
	(.03)	(.07)	(.04)	(.05)	(.11)	(.05)	(.07)
Control Mean	.03	.03	.03	.02	.18	.05	.04
Treatment Effect (%)	-27.6	36.6	9.5	-28.1	6.5	-23.6	-23.4
Joint F-Test (p-value)	0.408	0.358	0.675	0.614	0.454	0.611	0.598
Treatment FDR q-value	.978	.978	.978	.978	.978	.978	.978
Number Observations	6879	6879	6875	6879	6875	6877	6877
Panel E: 12 or Younger	•						
Treatment $(\lambda_1)$	01	00	01	.00	.01	.00	.01
	(.00)	(.01)	(.01)	(.00)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.01**	.01	.00	.00	02	00	00
0()	(.00)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	07***	06	03	.03	06	.06	01
	(.02)	(.07)	(.03)	(.03)	(.12)	(.07)	(.05)
Control Mean	.01	.03	.03	.02	.18	.04	.02
Treatment Effect (%)	-71.0	-8.0	-19.3	18.6	4.6	6.9	73.8
Joint F-Test (p-value)	0.038	0.776	0.763	0.708	0.772	0.831	0.245
Treatment FDR q-value	.939	1.000	1.000	1.000	1.000	1.000	.939
Number Observations	6836	6836	6832	6836	6832	6832	6832

Number Observations683668366836683268366832683268326832Notes:Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. See Section 10 for notes on outcome construction. Treatment is an indicator variable equal to 1 for<br/>PSDP Worm Groups 1 and 2, which received an additional 2.4 years of deworming on average compared to Group 3. Reported estimates for Female and Male are<br/>constructed from a single regression including treatment-female, cost-sharing-female, and saturation-female interaction terms. Reported estimates for Older than 12<br/>or Younger also report results using a single regression, including an indicator for those older than 12 at baseline and analogous interaction terms to Panels<br/>B and C. Covariates follow Baird et al. (2016) and include controls for baseline 1998 primary school population, geographic zone of the school, survey wave and<br/>month of interview, a female indicator variable, baseline 1998 school grade fixed effects, the average school test score on the 1996 Busia District mock exams, total<br/>primary school pupulis within 6 km, and a cost-sharing school indicator. Those treated in a separate vocational training intervention (VocEd) which occurred prior to<br/>KLPS-3 are dropped from the KLPS-4 samdk. Dress and KLPS shares treated in a separate small grant intervention (SCY) which occurred after KLPS-4s are dropped<br/>from the KLPS-4 samdk. Dress interacting weights. Standard errors are clustered at the 1998 school level. The Joint F-Test (p-value) gives the p-value<br/>associated with an F-test on the joint significance of the treatment, cost-sharing, and saturation coefficients against the null hypothesis that all three coefficients are<br/>jointly equal to zero. The FDR adjustment is carried out across the ten outcomes within this family separately by panel (full sample, females, males, older than 12,<br/>and 12 or younger). * denotes statistical significance a

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
				Employed -		Employed -	Employed -
	Employed -	Employed - Fiching	Employed - Monufacturing	Construction/	Employed -	Retail and Wholesale Trade	Trade
Panel A · Full Sample	Agriculture	FISHING	Manufacturing	Casual Labor	Services	wholesale frade	Contractor
Treatment $(\lambda_1)$	01	.00	01	00	.03	01	.01
	(.01)	(.01)	(.01)	(.01)	(.03)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.01	00	.01	.00	03	00	00
	(.01)	(.02)	(.01)	(.01)	(.03)	(.01)	(.01)
Saturation $(\lambda_3)$	03	13*	.00	.05	21	01	.04
C + 136	(.06)	(.08)	(.04)	(.05)	(.16)	(.08)	(.09)
Control Mean Treatment Effect (%)	.02	.02	.03	.02	.28	.06	.04
Ioint E-Test (p-value)	-09.0	20.0	-10.5	-19.5	9.5	-20.0	23.2
Treatment FDB q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4109	4109	4109	4109	4109	4109	4109
Panel R. Females							
Treatment $(\lambda_1)$	- 01	- 00	00	00	02	- 01	- 00
freatment (M)	(.01)	(.01)	(.01)	(.00)	(.04)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.00	01	.02*	.00	03	.00	.01
	(.01)	(.01)	(.01)	(.00)	(.04)	(.01)	(.01)
Saturation $(\lambda_3)$	07	03	03	.00	24	.04	.05
	(.06)	(.07)	(.06)	(.04)	(.19)	(.09)	(.06)
Control Mean	.01	0	.01	0	.24	.03	0
Treatment Effect (%)	-62.0		3.4		8.6	-38.3	-31.6
Joint F-Test (p-value)	0.620	0.810	0.205	0.956	0.370	0.582	0.389
Number Observations	2102	2102	2102	2102	2102	2102	2102
	2102	2102	2102	2102	2102	2102	2102
Panel C: Males	01	01	01	01	02	01	0.2
Treatment $(\lambda_1)$	01	.01	01	01	.05	01	.02
Cost Sharing $(\lambda_2)$	.01	.01	01	.00	03	00	02
0.000 0.000000 (0.2)	(.01)	(.03)	(.01)	(.01)	(.05)	(.02)	(.02)
Saturation $(\lambda_3)$	.00	21*	.03	.08	19	06	.03
	(.08)	(.11)	(.07)	(.09)	(.25)	(.13)	(.14)
Control Mean	.02	.04	.06	.05	.32	.08	.08
Treatment Effect (%)	-58.8	24.4	-19.2	-20.6	9.9	-18.9	25.0
Joint F-Test (p-value)	0.285	0.063	0.595	0.762	0.558	0.758	0.861
Number Observations	2007	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2007	2007	2007	2007	2007	2007	2007
Panel D: Older than 12	01	00	00	01	0.9	00	01
Treatment $(\lambda_1)$	01	.00	00	01	.03	02	01
Cost Sharing $(\lambda_i)$	(.01)	- 00	(.01)	(.01)	(.03)	(.02)	(.01)
Cost Sharing (72)	(.01)	(.02)	(.02)	(.01)	(.04)	(.01)	(.01)
Saturation $(\lambda_3)$	00	09	.00	.00	21	.02	.01
	(.09)	(.09)	(.07)	(.05)	(.20)	(.10)	(.09)
Control Mean	.03	.02	.02	.02	.28	.06	.05
Treatment Effect (%)	-42.2	21.6	-1.6	-31.1	10.1	-28.3	-19.9
Joint F-Test (p-value)	0.711	0.641	0.287	0.771	0.198	0.630	0.879
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2059	2059	2059	2059	2059	2059	2059
Panel E: 12 or Younger							
Treatment $(\lambda_1)$	01	.01	01	00	.03	01	.03
Cost Chamin - ()	(.01)	(.01)	(.02)	(.01)	(.04)	(.02)	(.02)
Cost Sharing $(\lambda_2)$	.01	00	01	.00	02	.01	01
Saturation $(\lambda_n)$	- 06	- 13	- 01	00	_ 19	- 06	07
Saturation (A3)	(.05)	(.10)	(.07)	(.06)	(.21)	(.13)	(.11)
Control Mean	.01	.02	.05	.03	.28	.06	.04
Treatment Effect (%)	-103.9	39.2	-24.2	-15.3	12.0	-23.3	75.0
Joint F-Test (p-value)	0.402	0.438	0.706	0.493	0.443	0.919	0.643
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	1997	1997	1997	1997	1997	1997	1997

Table 32: Occupational Choice - KLPS	5-4
--------------------------------------	-----

Notes: Analysis uses KLPS-4 data. See Section 10 for notes on outcome construction. See Table 31 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Employed	Employed	Employed	Employed -	Employed	Employed - Rotail and	Employed -
	Agriculture	Fishing	Manufacturing	Casual Labor	Services	Wholesale Trade	Contractor
Panel A: Full Sample	0						
Treatment $(\lambda_1)$	00	.01	01	.00	.01	00	.00
	(.01)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	00	.00.	.00.	.00	03*	.01	.01
$C_{\text{struction}}(\lambda)$	(.01)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	06	.03	07	03	.02	.07	07
Control Mean	02	03	04	02	19	04	03
Treatment Effect (%)	7	22.4	-20.5	16.8	3.4	-8.6	8.4
Joint F-Test (p-value)	.392	.873	.381	.824	.277	.402	.475
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	4593	4593	4593	4593	4593	4593	4593
Panel B: Females							
Treatment $(\lambda_1)$	.00	00	02	01*	.00	03**	01
	(.01)	(.01)	(.01)	(.01)	(.03)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	01	.00	.01	.00	03	.02*	.00
	(.01)	(.01)	(.01)	(.01)	(.03)	(.01)	(.01)
Saturation $(\lambda_3)$	12	.03	11	.03	.08	03	05
C + 111	(.08)	(.06)	(.07)	(.06)	(.15)	(.07)	(.04)
Control Mean Treatment Effect (%)	.01	0 102 4	.03	.01	.17	.04	241.2
Ioint E-Test (p-value)	0.247	-103.4	0.250	0.309	0.648	-07.4	0.553
Treatment FDB a-value	685	685	354	297	685	297	409
Number Observations	2259	2259	2259	2259	2259	2259	2259
Panal C. Malas							
Treatment $(\lambda_1)$	- 00	02	00	02	01	02	01
frequencie (A1)	(.01)	(.02)	(.01)	(.02)	(.03)	(.02)	(.02)
Cost Sharing $(\lambda_2)$	.00	.01	01	.00	03	.00	.01
<u> </u>	(.01)	(.02)	(.01)	(.02)	(.02)	(.02)	(.02)
Saturation $(\lambda_3)$	01	.03	04	07	03	.15**	09
	(.03)	(.11)	(.07)	(.09)	(.16)	(.07)	(.11)
Control Mean	.02	.05	.05	.03	.22	.04	.06
Treatment Effect (%)	-19.8	30.9	4.3	64.0	4.9	40.7	21.1
Joint F-Test (p-value)	0.926	0.778	0.783	0.198	0.490	0.153	0.420
Number Observations	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2334	2004	2004	2004	2004	2004	2334
Panel D: Older than $12$	00	00	01	01	01	00	00
Treatment $(\lambda_1)$	.00	.02	01	01	.01	02	02
Cost Sharing $(\lambda_{a})$	- 01	(.02)	- 01	(.01)	(.02)	(.01)	(.01)
0000 0111111g (7(2)	(.01)	(.02)	(.01)	(.01)	(.03)	(.02)	(.02)
Saturation $(\lambda_3)$	01	.00	05	09	.08	08	11
,	(.06)	(.09)	(.06)	(.09)	(.13)	(.07)	(.10)
Control Mean	.03	.03	.05	.02	.17	.05	.05
Treatment Effect (%)	7.1	52.7	-18.5	-50.1	4.4	-39.3	-41.1
Joint F-Test (p-value)	0.459	0.814	0.305	0.535	0.891	0.411	0.395
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2290	2290	2290	2290	2290	2290	2290
Panel E: 12 or Younger							
Treatment $(\lambda_1)$	00	00	01	.01	.00	.01	.02
$(1 \rightarrow 0)$	(.01)	(.02)	(.01)	(.01)	(.03)	(.01)	(.01)
Cost Snaring $(\lambda_2)$	.01	.02	.01	01	04	.00	00
Saturation $(\lambda_{n})$	- 10***	(.01)	- 08	(.01)	(.03) _ 02	(.01) 91*	- 03
Saturation (A3)	(.03)	(.12)	(.07)	(.07)	(.16)	(.11)	(.06)
Control Mean	.01	.03	.03	.02	.21	.03	.02
Treatment Effect (%)	-14.2	-4.4	-20.5	78.1	2.3	29.2	115.9
Joint F-Test (p-value)	0.001	0.536	0.688	0.541	0.347	0.271	0.172
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	2303	2303	2303	2303	2303	2303	2303

Table 33: Occupational Choice - KLPS-3

Notes: Analysis uses KLPS-3 data. See Section 10 for notes on outcome construction. See Table 31 for notes on the regression specification. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
				Employed -		Employed -	Employed -
	Employed -	Employed -	Employed -	Construction/	Employed -	Retail and	Trade
	Agriculture	Fishing	Manufacturing	Casual Labor	Services	Wholesale Trade	Contractor
Panel A: Full Sample							
Treatment $(\lambda_1)$	01**	.00	00	.00	.01	00	.00
	(.00)	(.01)	(.00)	(.00)	(.01)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.01**	00	.00	.00	02	.00	.00
a () )	(.00)	(.01)	(.00)	(.00)	(.01)	(.01)	(.01)
Saturation $(\lambda_3)$	04*	08	.00	.03	05	01	.01
<u> </u>	(.02)	(.05)	(.03)	(.03)	(.08)	(.03)	(.04)
Control Mean	.01	.03	.03	.02	.18	.04	.03
Treatment Effect (%)	-43.0	7.9	1	7.8	4.2	-11.3	7.6
Joint F-Test (p-value)	.049	.287	.963	.666	.324	.881	.787
Treatment FDR q-value	.131	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	15291	15291	15283	15291	15283	15285	15285
Panel B: Females							
Treatment $(\lambda_1)$	00	00	00	00	.01	01*	00
	(.00)	(.01)	(.00)	(.00)	(.02)	(.01)	(.00)
Cost Sharing $(\lambda_2)$	.01	00	.01***	.00	03	.01	.00
	(.01)	(.01)	(.00)	(.00)	(.02)	(.01)	(.00)
Saturation $(\lambda_3)$	07**	01	02	.01	04	02	00
	(.03)	(.05)	(.03)	(.02)	(.09)	(.04)	(.03)
Control Mean	.01	0	.01	0	.16	.03	0
Treatment Effect (%)	-33.1	-127.7	-30.2	-105.8	6.1	-43.8	-62.0
Joint F-Test (p-value)	0.214	0.884	0.062	0.701	0.319	0.371	0.780
Treatment FDR q-value	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	7560	7560	7557	7560	7557	7557	7557
Panel C. Males							
Treatment $(\lambda_1)$	- 01**	01	00	00	01	00	01
freatment (M)	(00)	(01)	(01)	(01)	(02)	(01)	(01)
Cost Sharing $(\lambda_2)$	.01*	.00	01	.00	01	00	.00
0.001 0.000008 (1.02)	(00)	(02)	(01)	(01)	(02)	(01)	(01)
Saturation $(\lambda_2)$	01	13	.02	.04	06	01	.01
	(.03)	(.08)	(.04)	(.05)	(.12)	(.05)	(.07)
Control Mean	02	05	04	03	21	05	06
Treatment Effect (%)	-48.5	15.1	8.3	15.5	2.8	6.5	9.8
Joint F-Test (p-value)	0.118	0.151	0.475	0.569	0.729	0.977	0.873
Treatment FDR q-value	.345	1.000	1.000	1.000	1.000	1.000	1.000
Number Observations	7731	7731	7726	7731	7726	7728	7728
D I. D. Older Here 10							
Panel D: Older than $12$ Treatment ()	00	01	00	00	01	01	00
Treatment $(\lambda_1)$	00	.01	.00	00	.01	01	00
Cost Chaming () )	(.00)	(.01)	(.01)	(.01)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.00	01	.00	(01)	02	.00	.00
Saturation $(\lambda_{-})$	(.00)	- 06	(.01)	(.01)	(.02)	- 06	- 01
Daturation (X3)	(02)	(.06)	(02)	(04)	(08)	00	(.05)
Control Mean	02	03	02	02	18	04	04
Treatment Effect (%)	-22.7	30.0	10.3	-11.7	83	-91.9	-10.2
Ioint E-Test (p-value)	0.712	0.315	0.560	0.011	0.555	0.464	0.968
Treatment FDB a-value	1.000	1.000	1.000	1 000	1.000	1.000	1.000
Number Observations	7668	7668	7664	7668	7664	7666	7666
	1000	1000	1004	1000	1004	1000	1000
Panel E: 12 or Younger							
Treatment $(\lambda_1)$	01*	00	00	.00	.00	00	.01
a . a	(.00)	(.01)	(.01)	(.00)	(.02)	(.01)	(.01)
Cost Sharing $(\lambda_2)$	.01***	.01	.00	.00	02	00	.00
a	(.00)	(.01)	(.01)	(.00)	(.02)	(.01)	(.01)
Saturation $(\lambda_3)$	07***	08	03	.03	10	.03	.02
Control Ma	(.02)	(.07)	(.03)	(.03)	(.11)	(.06)	(.04)
Control Mean	10.	.03	.03	.01	.18	.04	.02
Treatment Effect (%)	-82.4	-16.4	-16.6	29.4	2.3	-2.8	34.0
Joint F-Test (p-value)	0.021	0.082	0.700	0.100	0.401	0.927	0.388
Ireatment FDR q-value	.951	1.000	1.000	1.000	1.000	1.000	1.000
number Observations	1910	7970	1900	7970	1900	1900	1900

Table 34: Occupational Choice - Pooled (including SCY and VocEd)

Notes: Analysis uses KLPS-2, KLPS-3, and KLPS-4 data. Analysis includes KLPS respondents who participated in SCY or VocEd, with indicators for receiving a SCY grant or a vocational training voucher. See Section 10 for notes on outcome construction. See Table 31 for notes on the regression specification. Observations are weighted to be representative of the original KLPS population, and include KLPS population weights and KLPS intensive tracking weights. * denotes statistical significance at 10 pct., ** at 5 pct., and *** at 1 pct.